期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber,polypyrrole and nickel porous aerogel
1
作者 Leyi Zhang Hongyu Jin +7 位作者 Hanxin Liao Rao Zhang Bochong Wang Jianyong Xiang Congpu Mu Kun Zhai Tianyu Xue Fusheng Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1912-1921,共10页
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe... Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors. 展开更多
关键词 porous aerogel aramid nanofibers microwave absorbers pressure sensor porous structure
下载PDF
Transparent Thermally Tunable Microwave Absorber Prototype Based on Patterned VO2 Film 被引量:1
2
作者 Zhengang Lu Yilei Zhang +5 位作者 Heyan Wang Chao Xia Yunfei Liu Shuliang Dou Yao Li Jiubin Tan 《Engineering》 SCIE EI CAS CSCD 2023年第10期198-206,共9页
Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent... Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices. 展开更多
关键词 Tunable microwave absorber VO_(2)film Optical transparent Near unity absorption Large modulation depth
下载PDF
Magnetic and microwave absorbing properties of M-type barium ferrite/graphene oxide composite microwave absorber 被引量:1
3
作者 荆洪阳 唐梦茹 +2 位作者 韩永典 徐连勇 李敏 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期511-515,共5页
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco... In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite. 展开更多
关键词 M-type barium ferrite graphene oxide composite microwave absorber magnetic property microwave absorbing property
下载PDF
Analyzing Bandwidth on the Microwave Absorber by the Interface Reflection Model 被引量:3
4
作者 乔亮 王涛 +4 位作者 梅忠磊 李喜玲 隋文波 唐丽云 李发伸 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期118-121,共4页
Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-... Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-wavelength (λ/4) cancelation. Combining with the face reflection calculation, we identify the electromagnetic loss originated from skin effect, which is used to explain over half of the absorbed energy in high frequency band. Most impor- tantly, the unique electromagnetic loss cannot generate the reflection loss (RL) peak. Using the phase relation of face reflection, we show evidence that the λ/4 cancelation is vital to generate the RL peak. The calculated energy loss agrees well with the experimental data and lays the foundation for further research. 展开更多
关键词 of ab in by Analyzing Bandwidth on the microwave absorber by the Interface Reflection Model IS on
原文传递
Characterization of a Y-type hexagonal ferrite-based frequency tunable microwave absorber 被引量:3
5
作者 Fang Xu Yang Bai +1 位作者 Kai Jiang Li-jie Qiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期453-456,共4页
A Y-type hexaferrite rod with the composition of Ba2COl.8Cuo.2Fe12022 was presented as an absorbing material with high absorb- anee. Its high absorbance and wide absorption band result from ferromagnetic resonance (... A Y-type hexaferrite rod with the composition of Ba2COl.8Cuo.2Fe12022 was presented as an absorbing material with high absorb- anee. Its high absorbance and wide absorption band result from ferromagnetic resonance (FMR) that is self-biased by strong shape and mag- netocrystaUine anisotropy fields. Around the FMR frequency the specimen of the ferrite rods exhibits very high absorbance and the FMR frequency can be tuned by the rod dimension. In addition to the high absorbance and the wide tunable absorption band, the microwave ab- sorber has another advantage of light weight due to the use of the ferrite rods instead of ferrite slabs. 展开更多
关键词 hexagonal ferfite microwave materials microwave absorbers cobalt compounds ferromagnetic resonance
下载PDF
Effect of Adding Microwave Absorber on Structures and Properties of Hypercoal-Based Activated Carbons 被引量:3
6
作者 XU Lijun FAN Lihua +2 位作者 HOU Caixia LIU Junke SUN Zhang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期488-494,共7页
Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical... Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical performance of the activated carbons were tested, and the effects of adding CuO in the activation reaction process were also investigated. The activated carbons prepared were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The specific surface area and mesoporous ratio of the hypercoal-based activated carbon are 1257 m2/g and 55.4%, respectively. When the activated carbons are used as the electrode materials, the specific capacitance reaches 309 F/g in 3 M KOH electrolyte. In comparison with those prepared without CuO absorber, the specific capacitance increases by 11.6%. It was proved that the addition of microwave absorber in microwave-assisted activation was a low-cost method for rapidly preparing activated carbon, and it could effectively promote the development of the pore structure and improve its electrochemical performance. 展开更多
关键词 hypercoal activated carbon microwave absorber pore structure electrochemical performance
原文传递
Double-layer microwave absorber of nanocrystalline strontium ferrite and iron microfibers 被引量:1
7
作者 Wei Chun-Yu Shen Xiang-Qian Song Fu-Zhan 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期541-547,共7页
Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz.... Microwave absorption properties of the nanocrystalline strontium ferrite (SrFe12O19) and iron (α-Fe) microfibers for single-layer and double-layer structures are investigated in a frequency range of 2 GHz 18 GHz. For the singlelayer absorbers, the nanocrystalline SrFe12O19 microfibers show some microwave absorptions at 6 GHz 18 GHz, with a minimum reflection loss (RL) value of -11.9 dB at 14.1 GHz for a specimen thickness of 3.0 mm, while for the nanocrystalline α-Fe microfibers, their absorptions largely take place at 15 GHz-18 GHz with the RL value exceeding -10 dB, with a minimum .RL value of about -24 dB at 17.5 GHz for a specimen thickness of 0.7 mm. For the doublelayer absorber with an absorbing layer of α-Fe microfibers with a thickness of 0.7 mm and matching layer of SrFe12O19 microfibers with a thickness of 1.3 ram, the minimum RL value is about -63 dB at 16.4 GHz and the absorption band width is about 6.7 GHz ranging from 11.3 GHz to 18 GHz with the RL value exceeding -10 dB which covers the whole Ku-band (12.4 GHz 18 GHz) and 27% of X-band (8.2 GHz 12.4 GHz). 展开更多
关键词 nanocrystalline microfibers microwave absorber double-layer structure
原文传递
Progress in the Study of Microwave Pyrolysis Technology and Its Influencing Factors
8
作者 Hui Fang Lin Hai +2 位作者 Ruisheng Xie Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第10期30-61,共32页
In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, ... In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction. 展开更多
关键词 microwave microwave Pyrolysis microwave-Catalysed Pyrolysis CATALYST microwave absorber microwave Power Renewable Energy
下载PDF
Designing Symmetric Gradient Honeycomb Structures with Carbon‑Coated Iron‑Based Composites for High‑Efficiency Microwave Absorption
9
作者 Yu Zhang Shu‑Hao Yang +9 位作者 Yue Xin Bo Cai Peng‑Fei Hu Hai‑Yang Dai Chen‑Ming Liang Yun‑Tong Meng Ji‑Hao Su Xiao‑Juan Zhang Min Lu Guang‑Sheng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期224-241,共18页
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(... The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties. 展开更多
关键词 MIL-88C(Fe) Fe/Fe_(3)O_(4)/Fe_(3)C@C Controllable preparation Symmetric gradient honeycomb structure microwave absorbing
下载PDF
Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber 被引量:4
10
作者 Yan Guo Hu Liu +7 位作者 Dedong Wang Zeinhom M.El-Bahy Jalal T.Althakafy Hala M.Abo-Dief Zhanhu Guo Ben Bin Xu Chuntai Liu Changyu Shen 《Nano Research》 SCIE EI CSCD 2022年第8期6841-6850,共10页
Rational construction of hierarchical multi-component materials with abundant heterostructure is evolving as a promising strategy to achieve excellent metal-organic frameworks(MOFs)based electromagnetic wave(EMW)absor... Rational construction of hierarchical multi-component materials with abundant heterostructure is evolving as a promising strategy to achieve excellent metal-organic frameworks(MOFs)based electromagnetic wave(EMW)absorbers.Herein,hierarchical heterostructure WS_(2)/CoS_(2)@carbonized cotton fiber(CCF)was fabricated using the ZIF-67 MOFs nanosheets anchored cotton fiber(ZIF-67@CF)as a precursor through the tungsten etching,sulfurization,and carbonization process.Apart from the synergetic effect of dielectric-magnetic dual-loss mechanism,the hierarchical heterostructure and multicomponent of WS_(2)/CoS_(2)@CCF also display improved impedance matching.Furthermore,numerous W-S-Co bands and heterojunction interfaces of heterogeneous WS_(2)/CoS_(2)are beneficial to promoting additional interfacial/dipole polarization loss and conductive loss,thereby enhancing the EMW attenuation performance.Based on the percolation theory,a good balance between impedance matching and EMW absorption capacity was achieved for the WS_(2)/CoS_(2)@CCF/paraffin composite with 20 wt.%filler loading,exhibiting strong EMW absorption capability with a minimum reflection loss(RLmin)value of−51.26 dB at 17.36 GHz with 2 mm thickness and a maximum effective absorption bandwidth(EABmax)as wide as 6.72 GHz.Our research will provide new guidance for designing high-efficient MOFs derived EMW absorbers. 展开更多
关键词 HIERARCHICAL HETEROSTRUCTURE SULFURIZATION metal-organic framework microwave absorber
原文传递
Enhanced Microwave Absorption for High Filler Content Composite Molded from Polymer Coated Flaky Carbonyl Irons Modified by Silane Coupling Agents 被引量:2
11
作者 崔正明 MA Guoqing +5 位作者 WANG Mengqi LUO Chuangyu CHEN Zhihong MA Huiru LI Qifan 李维 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期42-51,共10页
A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block... A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm. 展开更多
关键词 microwave absorber coating quality magnetic permeability PERMITTIVITY low frequency
原文传递
A novel microwave absorber——BaAl_2Fe_(10)O_(19)/poly(m-toluidine) composite:Preparation and electromagnetic properties 被引量:4
12
作者 CHEN KeYu XU QingQing +4 位作者 LI LiangChao GONG PeiJun CHEN HaiFeng XIAO QiuShi Xu Feng 《Science China Chemistry》 SCIE EI CAS 2012年第7期1220-1227,共8页
BaFe10A12O19/poly(m-toluidine) (BFA/PMT) composites were synthesized by in-situ polymerization of m-toluidine in the presence of BaFe10Al2O19 particles. The structure, composition and morphology of the obtained sa... BaFe10A12O19/poly(m-toluidine) (BFA/PMT) composites were synthesized by in-situ polymerization of m-toluidine in the presence of BaFe10Al2O19 particles. The structure, composition and morphology of the obtained samples were characterized by using XRD, FT-IR, UV-visible spectroscopy, SEM and TEM techniques. Their electrical conductivity, magnetic property and microwave absorbing property were measured by the four-probe meter, the vibrating sample magnetometer and the vector network analyzer, respectively. The results indicated that BFA particles were coated effectively by PMT polymer and some interactions between PMT and BFA particles existing in the composites. The conductivity of BFA/PMT composite is smaller than that of pure polymers and its saturation magnetization is a little smaller than that of pure BFA. The influence of the constitution and film thickness of absorbent on its microwave absorbing property is evident. The microwave absorbing properties of the BFA/PMT composites are better than those of pure BFA and PMT. When optimizing the mass rate of BFA/PMT to 0.3, the absorbent with 2 mm film thickness has the minimum reflection loss of -28.26 dB at approximate 14.24 GHz, and the maximum available bandwidth of 8.8 GHz, respectively. The results show that these composites can be used as advancing absorption and shielding materials due to their favorable microwave absorbing property. 展开更多
关键词 COMPOSITES in-situ polymerization microwave absorbing property
原文传递
Preparation and Microwave Absorbing Properties of Double-layer Fine Iron Tailings Cementitious Materials
13
作者 LI Huawei WANG Rong +3 位作者 WANG Yulin LIU Feiyu WANG Qian WEI Muwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1126-1135,共10页
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe... To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials. 展开更多
关键词 microwave absorbing properties iron tailings electromagnetic parameters single-layer structure double-layer structure impedance matching
原文传递
Microwave absorption and thermal properties of coral-like SiC aerogel composites prepared by water glass as a silicon source
14
作者 Xinyuan Zhang Chenkang Xia +3 位作者 Weihai Liu Mingyuan Hao Yang Miao Feng Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1375-1387,共13页
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae... As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers. 展开更多
关键词 water glass silicon carbide aerogel microwave absorbing thermal insulation performance
下载PDF
Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiC_f/SiC composites with PyC interphase 被引量:2
15
作者 史毅敏 罗发 +3 位作者 丁冬海 穆阳 周万城 朱冬梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1484-1489,共6页
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C... The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior. 展开更多
关键词 SiCf/SiC composites thermal oxidation dielectric properties microwave absorbing mechanical properties
下载PDF
Annealing effects on the microwave permittivity and permeability properties of Fe_(79)Si_(16)B_5 microwires and their microwave absorption performances 被引量:3
16
作者 韩满贵 欧雨 +1 位作者 梁迪飞 邓龙江 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期1261-1265,共5页
This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measur... This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measurements show that nanocrystalline magnetic phase (α-Fe) has been formed in the amorphous matrix when it was annealed at 600℃. Hard magnetic phase (Fe2B) was formed in the microwires annealed at 750℃, which increases the magnetic coercivity. Microwave permittivity and permeability are found to be dependent on the microstruetures. The permittivity fitting results show that multi Lorentzian dispersion processes exist. For microwires annealed at 750℃, their resonance peaks due to the domain wall movements and natural resonance are found higher than those of microwires annealed at 600℃. The microwave absorption performance of microwires annealed at 600℃ is found better than microwires annealed at 750℃. 展开更多
关键词 amorphous magnetic microwires magnetic permeability PERMITTIVITY microwave absorber
原文传递
Preparation of multi-walled carbon nanotube–Fe composites and their application as light weight and broadband electromagnetic wave absorbers 被引量:3
17
作者 刘渊 刘祥萱 王煊军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期552-555,共4页
Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses... Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material. 展开更多
关键词 multi-walled carbon nanotube nano composites electrical properties microwave absorber
原文传递
Enhancement of microwave absorption of nanocomposite BaFe_(12)O_(19)/α-Fe microfibers 被引量:2
18
作者 杨新春 刘瑞江 +3 位作者 沈湘黔 宋福展 景茂祥 孟献丰 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期543-549,共7页
Nanocomposite BaFe12019/a-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel- thermal selective reduction process. The binary phase of BaFe12019 and a-Fe is formed after reduction of the pr... Nanocomposite BaFe12019/a-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel- thermal selective reduction process. The binary phase of BaFe12019 and a-Fe is formed after reduction of the precursor BaFel2019/a-Fe203 microfibers at 350 ℃ for 1 h. These nanocomposite microfibers are fabricated from a-Fe (16-22 nm in diameter) and BaFe12019 particles (36--42 nm in diameter) and basically exhibit a single-phase-like magnetization be- havior, with a high saturation magnetization and coercive force arising from the exchange--coupling interactions of soft a-Fe and hard BaFe12019. The microwave absorption characteristics in a 2-18 GHz frequency range of the nanocomposite BaFe12O19/a-Fe microfibers are mainly influenced by their mass ratio of a-Fe/BaFe12019 and specimen thickness. It is found that the nanocomposite BaFelzO19/a-Fe microfibers with a mass ratio of 1:6 and specimen thickness of 2.5 mm show an optimal reflection loss (RL) of -29.7 dB at 13.5 GHz and the bandwidth with RL exceeding -10 dB covers the whole Ku-band (12.4-18.0 GHz). This enhancement of microwave absorption can be attributed to the heterostruc- ture of soft, nano, conducting a-Fe particles embedded in hard, nano, semiconducting barium ferrite, which improves the dipolar polarization, interfacial polarization, exchange--coupling interaction, and anisotropic energy in the nanocomposite BaFe12O19/a-Fe microfibers. 展开更多
关键词 barium ferrite NANOCOMPOSITES MICROFIBERS microwave absorber
原文传递
Mossbauer spectroscopy studies on the particle size distribution effect of Fe–B–P amorphous alloy on the microwave absorption properties 被引量:1
19
作者 Yu-Hua Lv Yan-Hui Zhang +1 位作者 Jian Zhang Bin Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期10-19,共10页
An Fe-based nanocrystalline alloy powder is important for application in microwave absorption,and the particle size has a critical impact on the electromagnetic microwave parameters.Therefore,it is necessary to study ... An Fe-based nanocrystalline alloy powder is important for application in microwave absorption,and the particle size has a critical impact on the electromagnetic microwave parameters.Therefore,it is necessary to study further the effects of the particle size on such parameters and improve the microwave absorption performance of Febased nanocrystalline powers.In this study,Fe-B-P particles were prepared through a synthetic approach consisting of an aqueous chemical reduction and a ball milling treatment.We investigated the effects of ball milling on the microstructure and electromagnetic properties of Fe-B-P particles.The experimental results indicate that the Fe-B-P particles synthesized through an aqueous chemical reduction are amorphous spheres.Fe-B-P particles with an original particle size of 200-1200 nm can be milled into an irregular shape with the size reduced to\500 nm after 0.5 h of ball milling,and subsequently,the particles become smaller with increases in the milling time,with traces of Fe2O3 generated on the particle surface.The results of the Mo¨ssbauer spectra show that a portion of the small particles demonstrate a superparamagnetic property.The volume proportions of the superparamagnetic component increase from 13.1 to 15.8%as the treatment time increases.We measured the permittivity and permeability spectra of Fe-B-P particles within the frequency range of 2-18 GHz.The reflection loss(RL)is-10 dB for an absorber thickness of 1.7-5.0 mm.The RL is-20 dB for an absorber thickness of 1.9-2.7 mm.The microwave absorption properties of samples with the same thickness are improved with an increase in the treatment time and are shifted to a higher frequency,which will broaden the bandwidth of the absorption as well. 展开更多
关键词 Fe-B-P particles Mossbauer spectroscopy microwave absorber properties
下载PDF
Fabrication and performance optimization of Mn-Zn ferrite/EP composites as microwave absorbing materials 被引量:2
20
作者 王文杰 臧充光 焦清介 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期478-482,共5页
Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by... Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz). 展开更多
关键词 ferrite composite material microwave absorber
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部