The present study aimed at breeding new rice germplasms with similar genome but significantly differed in heat tolerance during the grain filling stage.A total of 791 BC1F8 backcross recombinant lines,derived from the...The present study aimed at breeding new rice germplasms with similar genome but significantly differed in heat tolerance during the grain filling stage.A total of 791 BC1F8 backcross recombinant lines,derived from the cross of Xieqingzao B /N22 //Xieqingzao B,were used as materials.Each rice line was separated evenly into two groups,and the heat tolerance of all rice lines were evaluated at natural high temperature in fields.The rice lines with heat tolerant index higher than 90% or lower than 40% were selected to compare the phenotypic characters and further identify heat tolerance at the early milky stage in a phytotron.Rice lines with similar phenotypic characters but significantly differed in heat tolerance at the milky stage were analyzed by 887 simple sequence repeat markers that were evenly distributed on the 12 rice chromosomes.In the result,12(6 pairs) rice lines with similar phenotypic characters but significantly differed in heat tolerance at the milky stage were obtained.Molecular marker analysis indicated that the genomic polymorphism between 703T and 704S was the smallest in the 6 pairs of rice lines,with only 16 polymorphic sites,including 22 different alleles.The application of these two backcross introgression rice lines for future study on the mechanisms of heat tolerance in rice at the milky stage will be theoretically beneficial in reducing the interference caused by genetic differences from experimental materials.展开更多
A 4-month-old male baby who presented in a moribund condition with seizures was found to have hepatomegaly,hypoglycemia and milky serum.Serum triglycerides were markedly elevated(3168 mg/dL) with cholesterol being 257...A 4-month-old male baby who presented in a moribund condition with seizures was found to have hepatomegaly,hypoglycemia and milky serum.Serum triglycerides were markedly elevated(3168 mg/dL) with cholesterol being 257 mg/dL and high density lipoprotein levels were low(19 mg/dL).The possibility of glycogen storage disease type Ⅰ was considered in the diagnosis.Infants with glycogen storage disease type Ⅰ may present like sepsis.The association of hepatomegaly, hypoglycemia and abnormal lipid profile stated above should alert the physician to consider glycogen storage disease type Ⅰ in the diagnosis.展开更多
Long periodic geodynamic processes with durations between 150 and 600 Million years appear to be in phase with similar galactic cycles, caused by the path of the solar system through the spiral arms of the Milky Way. ...Long periodic geodynamic processes with durations between 150 and 600 Million years appear to be in phase with similar galactic cycles, caused by the path of the solar system through the spiral arms of the Milky Way. This path is assumed by some authors to cause climate change due to cosmic ray fluctuations, affecting the cloud formation and the related albedo of the Earth, which periodically lead to glaciations every 150 Ma. With the glaciations, the sea level fluctuates accordingly. Subsequently, the varying sizes of shallow seas are causing periodic changes of the Moon’s?tidal dissipation, which affects presumably other geodynamic processes on the Earth. The Moon?may therefore synchronize directly or indirectly long periodic Phanerozoic cycles (sea level, orogeny, magmatism, sedimentation, etc.) with the Milky Way. As sea level fluctuations, orogeny, sedimentation and magmatism can be described as members of a geodynamic feedback system;no apparent reasons appear to be required to assign a cause of the cyclicity to agents outside of the?galactic-climatically synchronized Earth-Moon system. However, recent observations of young?volcanism on the near Earth terrestrial planets may require a new understanding. Magmatic/volcanic episodes on Venus, Mars and Mercury as well as on the Earth’s Moon are apparently contemporaneous thermal events accompanying increased magmatic/volcanic activities on the?Earth,?following a 300 myr cycle. Therefore, a collateral galactic thermal source within the Milky Way?appears to be needed that only affects the interior of the planets without any recognizable direct?effect on life and geology on the Earth. The search for such a source may lead to astrophysical?questions, related to a spiral arm affected distribution of dark energy, dark matter or even specific?neutrino sources. However, all possible astrophysical answers are outside of the author’s competence.展开更多
In 2013, World-Universe Model (WUM) made one of the most important predictions: “Macroobjects of the World have cores made up of the discussed DM (Dark Matter) particles. Other particles, including DM and baryonic ma...In 2013, World-Universe Model (WUM) made one of the most important predictions: “Macroobjects of the World have cores made up of the discussed DM (Dark Matter) particles. Other particles, including DM and baryonic matter, form shells surrounding the cores” [1]. Prof. R. Genzel and A. Ghez confirmed this prediction: “The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy” (Nobel Prize in Physics 2020). On May 12, 2022, astronomers, using the Event Horizon Telescope, released the first image of the accretion disk around the Sagittarius A* (Sgr A*) produced using a worldwide network of radio observatories made in April 2017. These observations were obtained by a global array of millimeter wavelength telescopes and analyzed by an international research team that now numbers over 300 people, which claimed that Sgr A* is a Supermassive Black Hole (SBH). In the present paper, we analyze these results in frames of WUM. Based on the totality of all accumulated experimental results for the Center of the Milky Way Galaxy we conclude that Sgr A* is the DM Core of our Galaxy.展开更多
From the Sun, a look at the edge of each spiral arm in our Milky Way (seen tangentially, along the line of sight) can yield numerous insights. Using different arm tracers (dust, masers, synchrotron emission, CO gas, o...From the Sun, a look at the edge of each spiral arm in our Milky Way (seen tangentially, along the line of sight) can yield numerous insights. Using different arm tracers (dust, masers, synchrotron emission, CO gas, open star clusters), we observe here for the first time an age gradient (about 12 ± 2 Myrs/kpc), much as predicted by the density wave theory. This implies that the arm tracers are leaving the dust lane at a relative speed of about 81 ± 10 km/s. We then compare with recent optical data obtained from the Gaia satellite, pertaining to the spiral arms.展开更多
To pinpoint the peak location of the synchrotron total intensity emission in a spiral arm, we use a map of the spiralarm locations (from the observed arm tangent). Thus in a typical spiral arm in Galactic Quadrant I, ...To pinpoint the peak location of the synchrotron total intensity emission in a spiral arm, we use a map of the spiralarm locations (from the observed arm tangent). Thus in a typical spiral arm in Galactic Quadrant I, we find the peak of the synchrotron radiation to be located about 220 ± 40 pc away from the inner arm edge (hot dust lane) inside the spiral arm. While most of the galactic disk has a clockwise large-scale magnetic field, we make a statistical analysis to delimitate more precisely the smaller reverse annulus with a counterclockwise galactic magnetic field. We find an annulus width of 2.1 ± 0.3 kpc (measured along the Galactic radius), located from 5.5 to 7.6 kpc from the Galactic Center). The annulus does not overlay with a single spiral arm—it encompasses segments of two different spiral arms. Using a recent delineation of the position of spiral arms, the field-reversed annulus is seen to encompass the Crux-Centaurus arm (in Galactic Quadrant IV) and the Sagittarius arm (in Galactic Quadrant I). Thus the full Sagittarius-Carina arm is composed of: 1) a Sagittarius arm (in Galactic quadrant I) with a counterclockwise magnetic field, and 2) a Carina arm (in Galactic Quadrant IV) with a clockwise magnetic field. Also the full Scutum-Crux-Centaurus arm is composed of: 1) a Scutum arm (in Galactic Quadrant I) with a clockwise magnetic field, and 2) a Crux-Centaurus arm (in Galactic Quadrant IV) with a counterclockwise magnetic field. Arm segments do not all have the same magnetic field direction. For completeness, we display 6 known magnetised advancing supershells around the Sun (within 400 pc), pushing out the interstellar magnetic field.展开更多
Models of hierarchical galaxy formation predict that the extended stellar halos of galaxies like our Milky Way show a great deal of sub-structure, arising from disrupted satellites. Spatial sub-structure is directly o...Models of hierarchical galaxy formation predict that the extended stellar halos of galaxies like our Milky Way show a great deal of sub-structure, arising from disrupted satellites. Spatial sub-structure is directly observed, and has been quantified, in the Milky Way's stellar halo. Phase-space conservation implies that there should be sub-structure in position-velocity space. Here, we aim to quantify such position-velocity sub-structure, using a state-of-the art data set having over 2000 blue horizontal branch (BHB) stars with photometry and spectroscopy from SDSS. For stars in dynamically cold streams ("young" streams), we expect that pairs of objects that are physically close also have similar velocities. Therefore, we apply the well-established "pairwise velocity difference" (PVD) statistic (| △Vlos |) (△r), where we expect (| △Vlos |) to drop for small separations At. We calculate the PVD for the SDSS BHB sample and find 〈| △Vlos |〉(△r) ≈ const., i.e. no such signal. By making mock-observations of the simulations by Bullock & Johnston and applying the same statistic, we show that for individual, dynamically young streams, or assemblages of such streams, (| △Vlos |) drops for small distance separations At, as qualitatively expected. However, for a realistic complete set of halo streams, the pair-wise velocity difference shows no signal, as the simulated halos are dominated by "dynamically old" phase-mixed streams. Our findings imply that the sparse sampling and the sample sizes in SDSS DR6 are still insufficient to use the position-velocity sub-structure for a stringent quantitative data-model comparison. Therefore, alternate statistics must be explored and much more densely sampled surveys, dedicated to the structure of the Milky Way, such as LAMOST, are needed.展开更多
Recent advances in the position and shape of each spiral arm in the Milky Way (pitch angle, shape, number, inter-arm separation at the Sun) are evaluated and compared, and a statistical analysis yields an updated idea...Recent advances in the position and shape of each spiral arm in the Milky Way (pitch angle, shape, number, inter-arm separation at the Sun) are evaluated and compared, and a statistical analysis yields an updated idealized Galactic map. Earlier tabular results were published in five blocks of 15 to 20 each, covering 1980 to 2007 [1-4]. This paper presents the latest two blocks, each between 15 and 20 entries of published spiral arm researches since 2008. Using this revised Galactic map, and a discussion on the width of the Sagittarius arm (major or minor or equal), an interpretation of orbital streamlines for the gas and magnetic fields is presented for 2 major arms and for 4 major arms in the Milky Way. Our interpretation for all the recent data favors the following: a four-arm non-circular spiral pattern for the Milky Way;the Sagittarius arm being likely an equal arm;the inter-arm separation at the Sun’s location converging near 3.0 kpc. We emphasize that these conclusions encompass all the data, and thus can vary somewhat from the results of data obtained from a single filter (only CO data, say).展开更多
We compare the observed radial velocity of different arm tracers, taken near the tangent to a spiral arm. A slight difference is predicted by the density wave theory, given the shock predicted at the entrance to the i...We compare the observed radial velocity of different arm tracers, taken near the tangent to a spiral arm. A slight difference is predicted by the density wave theory, given the shock predicted at the entrance to the inner spiral arm. In many of these spiral arms, the observed velocity offset confirms the prediction of the density wave theory (with a separation between the maser velocity and the CO gas peak velocity, of about 20 km/s)—when the observed offset is bigger than the error estimates.展开更多
The Chinese Space Station Telescope(CSST)is a cutting-edge two-meter astronomical space telescope currently under construction.Its primary Survey Camera(SC)is designed to conduct large-area imaging sky surveys using a...The Chinese Space Station Telescope(CSST)is a cutting-edge two-meter astronomical space telescope currently under construction.Its primary Survey Camera(SC)is designed to conduct large-area imaging sky surveys using a sophisticated seven-band photometric system.The resulting data will provide unprecedented data for studying the structure and stellar populations of the Milky Way.To support the CSST development and scientific projects related to its survey data,we generate the first comprehensive Milky Way stellar mock catalogue for the CSST SC photometric system using the TRILEGAL stellar population synthesis tool.The catalogue includes approximately 12.6 billion stars,covering a wide range of stellar parameters,photometry,astrometry,and kinematics,with magnitude reaching down to g=27.5 mag in the AB magnitude system.The catalogue represents our benchmark understanding of the stellar populations in the Milky Way,enabling a direct comparison with the future CSST survey data.Particularly,it sheds light on faint stars hidden from current sky surveys.Our crowding limit analysis based on this catalogue provides compelling evidence for the extension of the CSST Optical Survey(OS)to cover low Galactic latitude regions.The strategic extension of the CSST-OS coverage,combined with this comprehensive mock catalogue,will enable transformative science with the CSST.展开更多
We study the distribution of quasars on the celestial sphere according to ground-based SDSS and space-based WISE and Gaia observations. All distributions as a function of galactic latitude, b, exhibit a decrease in qu...We study the distribution of quasars on the celestial sphere according to ground-based SDSS and space-based WISE and Gaia observations. All distributions as a function of galactic latitude, b, exhibit a decrease in quasar frequency well outside the dust in and near the galactic plane. We prove that the observed decrease in quasar frequency at high galactic latitudes is not accompanied by reddening, meaning that it can not be caused by dust. The scattering of light by the circumgalactic gas is negligible because the Thomson scattering cross section is very small. We conclude the observed scattering of light must be caused by dark matter in the galactic halo. We determine the mass and charge of dark matter particles. If the dark matter particle is a fermion its mass, mDMand charge eDM=δe, where e is the elementary charge are: mDM=3.2×10−2eV and δ=3.856×10−5. If however the dark matter particle is spinless then: mDM=0.511eV and δ=2.132×10−4. These values for the charge of a dark matter particle are orders of magnitude higher than the upper limit of the neutrino charge according to laboratory experiments. Consequently, dark matter particles are not charged neutrinos. Since dark matter particles are charged, they must emit and absorb electromagnetic radiation. However, PDM~δ2, or: PDM~1.487×10−9Pe, where Peis the power output of a single electron.展开更多
We perform an extensive review of the numerous studies and methods used to determine the total mass of the Milky Way.We group the various studies into seven broad classes according to their modeling approaches.The cla...We perform an extensive review of the numerous studies and methods used to determine the total mass of the Milky Way.We group the various studies into seven broad classes according to their modeling approaches.The classes include:i)estimating Galactic escape velocity using high velocity objects;ii)measuring the rotation curve through terminal and circular velocities;iii)modeling halo stars,globular clusters and satellite galaxies with the spherical Jeans equation and iv)with phase-space distribution functions;v)simulating and modeling the dynamics of stellar streams and their progenitors;vi)modeling the motion of the Milky Way,M31 and other distant satellites under the framework of Local Group timing argument;and vii)measurements made by linking the brightest Galactic satellites to their counterparts in simulations.For each class of methods,we introduce their theoretical and observational background,the method itself,the sample of available tracer objects,model assumptions,uncertainties,limits and the corresponding measurements that have been achieved in the past.Both the measured total masses within the radial range probed by tracer objects and the extrapolated virial masses are discussed and quoted.We also discuss the role of modern numerical simulations in terms of helping to validate model assumptions,understanding systematic uncertainties and calibrating the measurements.While measurements in the last two decades show a factor of two scatters,recent measurements using Gaia DR2 data are approaching a higher precision.We end with a detailed discussion of future developments in the field,especially as the size and quality of the observational data will increase tremendously with current and future surveys.In such cases,the systematic uncertainties will be dominant and thus will necessitate a much more rigorous testing and characterization of the various mass determination methods.展开更多
Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangia...Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties.One interesting form related to the inverse variational problem is the logarithmic Lagrangian,which has a number of motivating features related to the Li′enard-type and Emden nonlinear differential equations.Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians.In this communication,we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians.One interesting consequence concerns the emergence of an extra pressure term,which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field.The case of the stellar halo of the Milky Way is considered.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.30671230)the Natural Science Foundation of Jiangxi Province,China(Grant No.2007GZN0253)
文摘The present study aimed at breeding new rice germplasms with similar genome but significantly differed in heat tolerance during the grain filling stage.A total of 791 BC1F8 backcross recombinant lines,derived from the cross of Xieqingzao B /N22 //Xieqingzao B,were used as materials.Each rice line was separated evenly into two groups,and the heat tolerance of all rice lines were evaluated at natural high temperature in fields.The rice lines with heat tolerant index higher than 90% or lower than 40% were selected to compare the phenotypic characters and further identify heat tolerance at the early milky stage in a phytotron.Rice lines with similar phenotypic characters but significantly differed in heat tolerance at the milky stage were analyzed by 887 simple sequence repeat markers that were evenly distributed on the 12 rice chromosomes.In the result,12(6 pairs) rice lines with similar phenotypic characters but significantly differed in heat tolerance at the milky stage were obtained.Molecular marker analysis indicated that the genomic polymorphism between 703T and 704S was the smallest in the 6 pairs of rice lines,with only 16 polymorphic sites,including 22 different alleles.The application of these two backcross introgression rice lines for future study on the mechanisms of heat tolerance in rice at the milky stage will be theoretically beneficial in reducing the interference caused by genetic differences from experimental materials.
基金financially supported by Kasturba Medical College,Manipal,Manipal University
文摘A 4-month-old male baby who presented in a moribund condition with seizures was found to have hepatomegaly,hypoglycemia and milky serum.Serum triglycerides were markedly elevated(3168 mg/dL) with cholesterol being 257 mg/dL and high density lipoprotein levels were low(19 mg/dL).The possibility of glycogen storage disease type Ⅰ was considered in the diagnosis.Infants with glycogen storage disease type Ⅰ may present like sepsis.The association of hepatomegaly, hypoglycemia and abnormal lipid profile stated above should alert the physician to consider glycogen storage disease type Ⅰ in the diagnosis.
文摘Long periodic geodynamic processes with durations between 150 and 600 Million years appear to be in phase with similar galactic cycles, caused by the path of the solar system through the spiral arms of the Milky Way. This path is assumed by some authors to cause climate change due to cosmic ray fluctuations, affecting the cloud formation and the related albedo of the Earth, which periodically lead to glaciations every 150 Ma. With the glaciations, the sea level fluctuates accordingly. Subsequently, the varying sizes of shallow seas are causing periodic changes of the Moon’s?tidal dissipation, which affects presumably other geodynamic processes on the Earth. The Moon?may therefore synchronize directly or indirectly long periodic Phanerozoic cycles (sea level, orogeny, magmatism, sedimentation, etc.) with the Milky Way. As sea level fluctuations, orogeny, sedimentation and magmatism can be described as members of a geodynamic feedback system;no apparent reasons appear to be required to assign a cause of the cyclicity to agents outside of the?galactic-climatically synchronized Earth-Moon system. However, recent observations of young?volcanism on the near Earth terrestrial planets may require a new understanding. Magmatic/volcanic episodes on Venus, Mars and Mercury as well as on the Earth’s Moon are apparently contemporaneous thermal events accompanying increased magmatic/volcanic activities on the?Earth,?following a 300 myr cycle. Therefore, a collateral galactic thermal source within the Milky Way?appears to be needed that only affects the interior of the planets without any recognizable direct?effect on life and geology on the Earth. The search for such a source may lead to astrophysical?questions, related to a spiral arm affected distribution of dark energy, dark matter or even specific?neutrino sources. However, all possible astrophysical answers are outside of the author’s competence.
文摘In 2013, World-Universe Model (WUM) made one of the most important predictions: “Macroobjects of the World have cores made up of the discussed DM (Dark Matter) particles. Other particles, including DM and baryonic matter, form shells surrounding the cores” [1]. Prof. R. Genzel and A. Ghez confirmed this prediction: “The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy” (Nobel Prize in Physics 2020). On May 12, 2022, astronomers, using the Event Horizon Telescope, released the first image of the accretion disk around the Sagittarius A* (Sgr A*) produced using a worldwide network of radio observatories made in April 2017. These observations were obtained by a global array of millimeter wavelength telescopes and analyzed by an international research team that now numbers over 300 people, which claimed that Sgr A* is a Supermassive Black Hole (SBH). In the present paper, we analyze these results in frames of WUM. Based on the totality of all accumulated experimental results for the Center of the Milky Way Galaxy we conclude that Sgr A* is the DM Core of our Galaxy.
文摘From the Sun, a look at the edge of each spiral arm in our Milky Way (seen tangentially, along the line of sight) can yield numerous insights. Using different arm tracers (dust, masers, synchrotron emission, CO gas, open star clusters), we observe here for the first time an age gradient (about 12 ± 2 Myrs/kpc), much as predicted by the density wave theory. This implies that the arm tracers are leaving the dust lane at a relative speed of about 81 ± 10 km/s. We then compare with recent optical data obtained from the Gaia satellite, pertaining to the spiral arms.
文摘To pinpoint the peak location of the synchrotron total intensity emission in a spiral arm, we use a map of the spiralarm locations (from the observed arm tangent). Thus in a typical spiral arm in Galactic Quadrant I, we find the peak of the synchrotron radiation to be located about 220 ± 40 pc away from the inner arm edge (hot dust lane) inside the spiral arm. While most of the galactic disk has a clockwise large-scale magnetic field, we make a statistical analysis to delimitate more precisely the smaller reverse annulus with a counterclockwise galactic magnetic field. We find an annulus width of 2.1 ± 0.3 kpc (measured along the Galactic radius), located from 5.5 to 7.6 kpc from the Galactic Center). The annulus does not overlay with a single spiral arm—it encompasses segments of two different spiral arms. Using a recent delineation of the position of spiral arms, the field-reversed annulus is seen to encompass the Crux-Centaurus arm (in Galactic Quadrant IV) and the Sagittarius arm (in Galactic Quadrant I). Thus the full Sagittarius-Carina arm is composed of: 1) a Sagittarius arm (in Galactic quadrant I) with a counterclockwise magnetic field, and 2) a Carina arm (in Galactic Quadrant IV) with a clockwise magnetic field. Also the full Scutum-Crux-Centaurus arm is composed of: 1) a Scutum arm (in Galactic Quadrant I) with a clockwise magnetic field, and 2) a Crux-Centaurus arm (in Galactic Quadrant IV) with a counterclockwise magnetic field. Arm segments do not all have the same magnetic field direction. For completeness, we display 6 known magnetised advancing supershells around the Sun (within 400 pc), pushing out the interstellar magnetic field.
基金funded by the National Natural Science Foundation of China (NSFC) under Nos.10821061 and 10673015by the National Basic Research Program of China under grant 2007CB815103
文摘Models of hierarchical galaxy formation predict that the extended stellar halos of galaxies like our Milky Way show a great deal of sub-structure, arising from disrupted satellites. Spatial sub-structure is directly observed, and has been quantified, in the Milky Way's stellar halo. Phase-space conservation implies that there should be sub-structure in position-velocity space. Here, we aim to quantify such position-velocity sub-structure, using a state-of-the art data set having over 2000 blue horizontal branch (BHB) stars with photometry and spectroscopy from SDSS. For stars in dynamically cold streams ("young" streams), we expect that pairs of objects that are physically close also have similar velocities. Therefore, we apply the well-established "pairwise velocity difference" (PVD) statistic (| △Vlos |) (△r), where we expect (| △Vlos |) to drop for small separations At. We calculate the PVD for the SDSS BHB sample and find 〈| △Vlos |〉(△r) ≈ const., i.e. no such signal. By making mock-observations of the simulations by Bullock & Johnston and applying the same statistic, we show that for individual, dynamically young streams, or assemblages of such streams, (| △Vlos |) drops for small distance separations At, as qualitatively expected. However, for a realistic complete set of halo streams, the pair-wise velocity difference shows no signal, as the simulated halos are dominated by "dynamically old" phase-mixed streams. Our findings imply that the sparse sampling and the sample sizes in SDSS DR6 are still insufficient to use the position-velocity sub-structure for a stringent quantitative data-model comparison. Therefore, alternate statistics must be explored and much more densely sampled surveys, dedicated to the structure of the Milky Way, such as LAMOST, are needed.
文摘Recent advances in the position and shape of each spiral arm in the Milky Way (pitch angle, shape, number, inter-arm separation at the Sun) are evaluated and compared, and a statistical analysis yields an updated idealized Galactic map. Earlier tabular results were published in five blocks of 15 to 20 each, covering 1980 to 2007 [1-4]. This paper presents the latest two blocks, each between 15 and 20 entries of published spiral arm researches since 2008. Using this revised Galactic map, and a discussion on the width of the Sagittarius arm (major or minor or equal), an interpretation of orbital streamlines for the gas and magnetic fields is presented for 2 major arms and for 4 major arms in the Milky Way. Our interpretation for all the recent data favors the following: a four-arm non-circular spiral pattern for the Milky Way;the Sagittarius arm being likely an equal arm;the inter-arm separation at the Sun’s location converging near 3.0 kpc. We emphasize that these conclusions encompass all the data, and thus can vary somewhat from the results of data obtained from a single filter (only CO data, say).
文摘We compare the observed radial velocity of different arm tracers, taken near the tangent to a spiral arm. A slight difference is predicted by the density wave theory, given the shock predicted at the entrance to the inner spiral arm. In many of these spiral arms, the observed velocity offset confirms the prediction of the density wave theory (with a separation between the maser velocity and the CO gas peak velocity, of about 20 km/s)—when the observed offset is bigger than the error estimates.
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2203100,and 2021YFC2203104)the science research grants from the China Manned Space Project(Grant No.CMSCSST-2021-A08)+4 种基金the National Natural Science Foundation of China(Grant No.12003001)the Anhui Project(Grant No.Z010118169)the support of the National Natural Science Foundation of China(Grant No.12203100)the National Natural Science Foundation of China(Grant No.12273077)the support from Padova University through the research project PRD 2021。
文摘The Chinese Space Station Telescope(CSST)is a cutting-edge two-meter astronomical space telescope currently under construction.Its primary Survey Camera(SC)is designed to conduct large-area imaging sky surveys using a sophisticated seven-band photometric system.The resulting data will provide unprecedented data for studying the structure and stellar populations of the Milky Way.To support the CSST development and scientific projects related to its survey data,we generate the first comprehensive Milky Way stellar mock catalogue for the CSST SC photometric system using the TRILEGAL stellar population synthesis tool.The catalogue includes approximately 12.6 billion stars,covering a wide range of stellar parameters,photometry,astrometry,and kinematics,with magnitude reaching down to g=27.5 mag in the AB magnitude system.The catalogue represents our benchmark understanding of the stellar populations in the Milky Way,enabling a direct comparison with the future CSST survey data.Particularly,it sheds light on faint stars hidden from current sky surveys.Our crowding limit analysis based on this catalogue provides compelling evidence for the extension of the CSST Optical Survey(OS)to cover low Galactic latitude regions.The strategic extension of the CSST-OS coverage,combined with this comprehensive mock catalogue,will enable transformative science with the CSST.
文摘We study the distribution of quasars on the celestial sphere according to ground-based SDSS and space-based WISE and Gaia observations. All distributions as a function of galactic latitude, b, exhibit a decrease in quasar frequency well outside the dust in and near the galactic plane. We prove that the observed decrease in quasar frequency at high galactic latitudes is not accompanied by reddening, meaning that it can not be caused by dust. The scattering of light by the circumgalactic gas is negligible because the Thomson scattering cross section is very small. We conclude the observed scattering of light must be caused by dark matter in the galactic halo. We determine the mass and charge of dark matter particles. If the dark matter particle is a fermion its mass, mDMand charge eDM=δe, where e is the elementary charge are: mDM=3.2×10−2eV and δ=3.856×10−5. If however the dark matter particle is spinless then: mDM=0.511eV and δ=2.132×10−4. These values for the charge of a dark matter particle are orders of magnitude higher than the upper limit of the neutrino charge according to laboratory experiments. Consequently, dark matter particles are not charged neutrinos. Since dark matter particles are charged, they must emit and absorb electromagnetic radiation. However, PDM~δ2, or: PDM~1.487×10−9Pe, where Peis the power output of a single electron.
基金supported by the National Natural Science Foundation of China(Grant Nos.11973032,and 11890691)the National Key Basic Research and Development Program of China(Grant No.2018YFA0404504)JSPS Grant-in-Aid for Scientific Research JP17K14271。
文摘We perform an extensive review of the numerous studies and methods used to determine the total mass of the Milky Way.We group the various studies into seven broad classes according to their modeling approaches.The classes include:i)estimating Galactic escape velocity using high velocity objects;ii)measuring the rotation curve through terminal and circular velocities;iii)modeling halo stars,globular clusters and satellite galaxies with the spherical Jeans equation and iv)with phase-space distribution functions;v)simulating and modeling the dynamics of stellar streams and their progenitors;vi)modeling the motion of the Milky Way,M31 and other distant satellites under the framework of Local Group timing argument;and vii)measurements made by linking the brightest Galactic satellites to their counterparts in simulations.For each class of methods,we introduce their theoretical and observational background,the method itself,the sample of available tracer objects,model assumptions,uncertainties,limits and the corresponding measurements that have been achieved in the past.Both the measured total masses within the radial range probed by tracer objects and the extrapolated virial masses are discussed and quoted.We also discuss the role of modern numerical simulations in terms of helping to validate model assumptions,understanding systematic uncertainties and calibrating the measurements.While measurements in the last two decades show a factor of two scatters,recent measurements using Gaia DR2 data are approaching a higher precision.We end with a detailed discussion of future developments in the field,especially as the size and quality of the observational data will increase tremendously with current and future surveys.In such cases,the systematic uncertainties will be dominant and thus will necessitate a much more rigorous testing and characterization of the various mass determination methods.
文摘Recently,the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations.Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties.One interesting form related to the inverse variational problem is the logarithmic Lagrangian,which has a number of motivating features related to the Li′enard-type and Emden nonlinear differential equations.Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians.In this communication,we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians.One interesting consequence concerns the emergence of an extra pressure term,which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field.The case of the stellar halo of the Milky Way is considered.