期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Spatial deduction of mining-induced stress redistribution using an optimized non-negative matrix factorization model
1
作者 Xu-yan Tan Weizhong Chen +1 位作者 Luyu Wang Changkun Qin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2868-2876,共9页
Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the... Investigation of mining-induced stress is essential for the safety of coal production.Although the field monitoring and numerical simulation play a significant role in obtaining the structural mechanical behaviors,the range of monitoring is not sufficient due to the limits of monitoring points and the associated numerical result is not accurate.In this study,we aim to present a spatial deduction model to characterize the mining-induced stress distribution using machine learning algorithm on limited monitoring data.First,the framework of the spatial deduction model is developed on the basis of non-negative matrix factorization(NMF)algorithm and optimized by mechanical mechanism.In this framework,the spatial correlation of stress response is captured from numerical results,and the learned correlation is employed in NMF as a mechanical constrain to augment the limited monitoring data and obtain the overall mechanical performances.Then,the developed model is applied to a coal mine in Shandong,China.Experimental results show the stress distribution in one plane is derived by several monitoring points,where mining induced stress release is observed in goaf and stress concentration in coal pillar,and the intersection point between goaf and coal seam is a sensitive area.The indicators used to evaluate the property of the presented model indicate that 83%mechanical performances have been captured and the deduction accuracy is about 92.9%.Therefore,it is likely that the presented deduction model is reliable. 展开更多
关键词 Machine learning Underground construction MONITORING mining-induced stress PREDICTION
下载PDF
Numerical simulation of gas flow process in mining-induced crack network 被引量:14
2
作者 Zhou Hongwei Liu Jinfeng +2 位作者 Xue Dongjie Yi Haiyang Xue Junhua 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期793-799,共7页
The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehe... The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area. 展开更多
关键词 GAS flow GAS pressure PHYSICAL modeling mining-induced cracks COMSOL
下载PDF
Mining-induced movement properties and fissure time-space evolution law in overlying strata 被引量:10
3
作者 Xu Xingliang Zhang Nong Tian Suchuan 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期817-820,共4页
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie... Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis. 展开更多
关键词 mining-induced MOVEMENT Overlying strata MOVEMENT property Evolution of FRACTURE WEDGE-SHAPED FRACTURE zone
下载PDF
Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses 被引量:10
4
作者 Wu Cai Linming Dou +1 位作者 Guangyao Si Yawei Hu 《Engineering》 SCIE EI 2021年第5期687-700,共14页
Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coa... Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts. 展开更多
关键词 Coal burst Fault reactivation mining-induced stress Seismic-based dynamic stress Fault pillar
下载PDF
Numerical simulation of gas migration into mining-induced fracture network in the goaf 被引量:8
5
作者 Cao Jie Li Wenpu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期681-685,共5页
Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extra... Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extraction. To study gas migration in mining-induced fractures, one mining face of 10 th Mine in Pingdingshan Coalmine Group in Henan, China, has been selected as the case study for this work. By establishing the mathematical model of gas migration under the influence of coal seam mining, discrete element software UDEC and Multiphysics software COMSOL are employed to model gas migration in mining-induced fractures above the goaf. The results show that as the working face advances, the goaf overburden gradually forms a mining-induced fracture network in the shape of a trapezoid, the size of which increases with the distance of coal face advance. Compared with gas migration in the overburden matrix, the gas flow in the fracture network due to mining is far greater. The largest mining-induced fracture is located at the upper end of the trapezoidal zone, which results in the largest gas flux in the network. When drilling for gas extraction in a mining-induced fracture field, the gas concentration is reduced in the whole region during the process of gas drainage, and the rate of gas concentration drops faster in the fractured zone. It is shown that with gas drainage, the gas flow velocity in the mininginduced fracture network is faster. 展开更多
关键词 Gas migration FRACTURES mining-induced Numerical simulation
下载PDF
Characteristics of evolution of mining-induced stress field in the longwall panel:insights from physical modeling 被引量:3
6
作者 Jinfu Lou Fuqiang Gao +4 位作者 Jinghe Yang Yanfang Ren Jianzhong Li Xiaoqing Wang Lei Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期938-955,共18页
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre... The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis. 展开更多
关键词 Longwall mining mining-induced stress field Physical modeling Principal stress trajectory Strain brick
下载PDF
Coupling mechanism between mining-induced deformation and permeability of coal 被引量:3
7
作者 Xue Dongjie Zhou Hongwei +1 位作者 Wang Chaosheng Li Dongping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期783-787,共5页
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th... The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit. 展开更多
关键词 mining-induced mechanical behavior Coal deformation SEEPAGE Coupling test
下载PDF
A geometrically and locally adaptive remeshing method for finite difference modeling of mining-induced surface subsidence 被引量:1
8
作者 Ziyu Zhang Gang Mei Nengxiong Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期219-231,共13页
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ... Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China. 展开更多
关键词 mining-induced subsidence Numerical modeling Finite difference method(FDM) Distorted mesh Adaptive remeshing
下载PDF
Practice and technical approach of GPS observation of mining-induced ground subsidence
9
作者 GAO Jun-hai~(1,2) WU Li-xin~1 (1. China University of Mining and Technology Beijing Campus, Beijing 100083, China 2. Tangshan Branch, China Coal Research Institute, Tangshan 063012, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期65-68,共4页
The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtaine... The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtained. When surveying the subsidence value in the mining-induced ground subsidence, the change of the height of monitoring point is needed. On the above theoretical basis, the problem involved in GPS observation of mining-induced ground subsidence and their counter measures were discussed, and an introduction was made that the subsidence value obtained in the monitoring mining-induced ground subsidence can use the change of height of geodetic as a alternative, the result of check on the accuracy and reliability of repetitions observations was analysed. Finally, the effect of errors on accuracy of GPS observation and their reduction measures were elaborated. 展开更多
关键词 mining-induced ground SUBSIDENCE GPS OBSERVATION OBSERVATION ACCURACY reliability
下载PDF
Study on the Safety and Prevention Technology of Coal Mining under the River in Xingyuan Coal Mine
10
作者 Abdoulaye Sylla Wenbing Guo 《Open Journal of Geology》 CAS 2024年第3期339-402,共64页
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj... Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining. 展开更多
关键词 Coal mining-induced Surface Subsidence Ecological and Infrastructural Challenges Safe Mining Practices Underwater Conditions Multidisciplinary Approach Safety Measures Prevention Techniques
下载PDF
Mechanical behaviors of coal measures and ground control technologies for China's deep coal mines-A review 被引量:1
11
作者 Hongpu Kang Fuqiang Gao +1 位作者 Gang Xu Huaiwei Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期37-65,共29页
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects... This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces. 展开更多
关键词 Deep underground coal mine Mechanical behavior mining-induced stress mining-induced fractures Ground control for roadways Ground control for working face
下载PDF
Ground support design for dynamic loading conditions:A quantitative data-driven approach based on rockburst case studies 被引量:4
12
作者 Philippe Morissette John Hadjigeorgiou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期909-919,共11页
There are considerable challenges associated with the design of ground support for seismically-active underground mines.It is extremely difficult to establish the demand on ground support as well as the capacity of a ... There are considerable challenges associated with the design of ground support for seismically-active underground mines.It is extremely difficult to establish the demand on ground support as well as the capacity of a ground support system.The resulting dynamic or impact loads caused by mining-induced seismicity are difficult to anticipate and quantify.The performance of a ground support system is defined by the load distribution and interaction between several reinforcement and surface support elements.Consequently,the design of ground support in seismically-active mines tends to evolve,or be modified based on qualitative assessments of perceived performance or response to significant seismic events or rockbursts.This research is motivated by a need to provide quantitative and data-driven design guidelines for ground support systems subjected to dynamic-loading conditions.Rockburst data were collected from three deep and seismically-active underground mines in the Sudbury basin in Canada.The constructed database comprises 209 seismic events that resulted in damage to mine excavations and ground support.These events were associated with damage at 324 locations within the three mines.The developed ground support design strategy,based on these documented case studies,identifies areas where the use of dynamic or enhanced support should be employed.The developed design methodology provides guidelines for the zoning of mine locations in which installation of enhanced support is recommended,the specifications for an optimal ground support system,and the timing or sequence of installation. 展开更多
关键词 GROUND SUPPORT design mining-induced SEISMICITY ROCKBURST
下载PDF
Quantitative analysis with plastic strain indicators to estimate damage induced by fault-slip 被引量:3
13
作者 Atsushi Sainoki Hani S.Mitri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期1-10,共10页
In the present study, methodologies to evaluate damage around an underground opening due to seismic waves arising from mining-induced fault-slip are examined. First, expressions for an associated flow rule with a fail... In the present study, methodologies to evaluate damage around an underground opening due to seismic waves arising from mining-induced fault-slip are examined. First, expressions for an associated flow rule with a failure criterion are developed for biaxial stress conditions, which are implemented into FLAC3D code. A three-dimensional(3D) mine model encompassing a fault running parallel to a steeply dipping orebody is constructed, whereby static and dynamic analyses are performed to extract stopes and simulate fault-slip in dynamic condition, respectively. In the analysis, the developed biaxial model is applied to the stope wall. The fault-slip simulation is performed, considering shearing of fault surface asperities and resultant stress drop driving the fault-slip. Two methodologies to evaluate damage caused by seismic waves arising from the simulated fault-slip are examined:(i) the ratio of dynamic plastic strain increment to elastic strain limit and(ii) plastic strain energy density. For the former one, two types of strain increments are tested, namely effective shear strain increment and volumetric strain increment.The results indicate that volumetric strain increment is a suitable index for detecting damage near the stope wall, while effective shear strain increment is appropriate for evaluating damage in backfill. The evaluation method with plastic strain energy density is found to be capable of assessing damage accumulated in an extensive area caused by rock mass oscillation due to seismic wave propagation. Possible damage to mine developments in the proximity of a stope is clearly described with the index. The comparison of the two methods clarifies that the former one assesses "instantaneous" damage, which is found to be different from "accumulated" damage calculated using plastic strain energy density, in terms of damage area and its location. It is thus concluded that the combination of the two methodologies leads to more accurate damage assessment as a proper measure against rockburst. 展开更多
关键词 Stability of mine OPENING mining-induced fault-slip Seismic waves BIAXIAL stress condition
下载PDF
A comparison of seismic response to conventional and face destress blasting during deep tunnel development 被引量:1
14
作者 C.Drover E.Villaescusa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期965-978,共14页
A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The t... A novel design of development face destress blasting was implemented during the construction of an experimental tunnel at great depth.A second tunnel was developed nearby using conventional blasting as a control.The tunnels were developed parallel to one another and perpendicular to a high subhorizontal stress.High resolution seismic monitoring was used to record and compare the seismic response generated by each excavation.Analysis of the seismic data from the conventionally blasted tunnel indicated that the seismogenic zone of stress-driven instability extended up to 3.6 m ahead of the face.Destress blasting within the corresponding zone of the adjacent tunnel had the effect of reducing the rock mass stiffness,primarily due to weakening of the pre-existing natural discontinuities.The reduction in rock mass stiffness was inferred from the spatial broadening of the seismogenic zone and associated reduction in the measured spatial density of events,radiated energy and seismic potency ahead of the face.High strain gradients around the unsupported portion of the conventionally blasted excavation were implied by the rate at which the spatial density of seismicity changed with respect to the tunnel face position.In contrast,the change in the spatial density of seismicity around the destressed development face was much more gradual.This was indicative of lower strain gradients in the rock there.A reduction in rock mass stiffness following destress blasting was also indicated by the much wider variety of seismic source mechanisms recorded adjacent to the destressed tunnel.Seismic source mechanisms associated with destress blasting were also more clearly characteristic of compressive overstressing with fracture closure.The source mechanism data also indicated that destress blasting induced instability on all natural joint sets.When compared to conventional development blasting,destress blasting typically reduced violent strain energy release from the rock mass and the associated seismicity,but not always. 展开更多
关键词 Destress BLASTING mining-induced SEISMICITY ROCK fracture Deep mining TUNNELLING
下载PDF
Effects of mining-induced earthquakes on water table in deep wells
15
作者 车用太 马志峰 +3 位作者 王尢培 鱼金子 黄积刚 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第1期111-118,共8页
Effectsofmining-inducedearthquakesonwatertableindeepwellsYong-TatCHE;Zhi-Feng;You-PeiWANG;Jin-ZiYU;Ji-GangHU... Effectsofmining-inducedearthquakesonwatertableindeepwellsYong-TatCHE;Zhi-Feng;You-PeiWANG;Jin-ZiYU;Ji-GangHUANGandQiWANG(车用太,... 展开更多
关键词 mining-induced EARTHQUAKE DEEP ground WATER WATER level change EARTHQUAKE precursor
下载PDF
Fracture distribution in overburden strata induced by underground mining
16
作者 Wenli Yao Enzhi Wang +1 位作者 Xiaoli Liu Ran Zhou 《Deep Underground Science and Engineering》 2022年第1期58-64,共7页
Coal-mining activities give rise to a series of ecological environmental problems,such as ground settlement and groundwater pollution.In fact,they are mainly caused by mining-induced fractures.Hence,it is necessary to... Coal-mining activities give rise to a series of ecological environmental problems,such as ground settlement and groundwater pollution.In fact,they are mainly caused by mining-induced fractures.Hence,it is necessary to study the mining-induced fracture distribution to identify the behavior of rock mass movement.However,the fractures in overburden strata cannot be directly measured owing to the special condition.Therefore,the majority of previous studies are based on experiments or experience.For this reason,this study first used a discrete element method to simulate the shape of mining-induced fractures in overburden strata.Then,a geophysical tool of transient electromagnetic method(TEM)was used to investigate the mining-induced fracture distribution.Based on the low-resistivity anomaly area,the water-rich area in overburden strata was analyzed to be mainly caused by fracture seepage.Through the mutual authentication between numerical simulation and TEM results,the mining-induced fractures in overburden strata were explored.This study can enhance the understanding of mining-induced fracture distribution on the one hand and guarantee the coal mining safety on the other,thus guiding the coordinated development between coal mining and environmental protection. 展开更多
关键词 groundwater seepage mining-induced fracture numerical simulation rock mass deformation TEM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部