期刊文献+
共找到282,090篇文章
< 1 2 250 >
每页显示 20 50 100
Mitochondrial dynamics caused by QoIs and SDHIs fungicides depended on FgDnm1 in Fusarium graminearum
1
作者 KANG Jin-bo ZHANG Jie +5 位作者 LIU Yin-kai SONG Ji-chang OU Jian-lin TAO Xian ZHOU Ming-guo DUAN Ya-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第2期481-494,共14页
Fusarium head blight(FHB) caused by Fusarium graminearum is a devastating fungal disease on small grain cereal crops,because it reduces yield and quality and causes the mycotoxin contamination to the grain.Dynamins an... Fusarium head blight(FHB) caused by Fusarium graminearum is a devastating fungal disease on small grain cereal crops,because it reduces yield and quality and causes the mycotoxin contamination to the grain.Dynamins and dynamin-related proteins(DRPs) are large GTPase superfamily members,which are typically involved in the budding and division of vesicles in eukaryotic cells,but their roles in Fusarium spp.remain unexplored.Here,we found that FgDnm1,a DRP and homolog to Dnm1 in Saccharomyces cerevisiae,contributes to the normal fungal growth,sexual reproduction and sensitivity to fungicides.In addition,we found FgDnm1 co-localizes with mitochondria and is involved in toxisome formation and deoxynivalenol(DON) production.Several quinone outside inhibitors(QoIs) and succinate dehydrogenase inhibitors(SDHIs) cause fragmentated morphology of mitochondria.Importantly,the deletion of FgDnm1displays filamentous mitochondria and blocks the mitochondrial fragmentation induced by QoIs and SDHIs.Taken together,our studies uncover the effect of mitochondrial dynamics in fungal normal growth and how such events link to fungicides sensitivity and toxisome formation.Thus,we concluded that altered mitochondrial morphology induced by QoIs and SDHIs depends on FgDnm1. 展开更多
关键词 Fusarium graminearum FgDnm1 mitochondrial dynamics fungicides
下载PDF
Human mesenchymal stem cells exhibit altered mitochondrial dynamics and poor survival in high glucose microenvironment
2
作者 Ejlal Abu-El-Rub Fatimah Almahasneh +9 位作者 Ramada R Khasawneh Ayman Alzu'bi Doaa Ghorab Rawan Almazari Huthaifa Magableh Ahmad Sanajleh Haitham Shlool Mohammad Mazari Noor S Bader Joud Al-Momani 《World Journal of Stem Cells》 SCIE 2023年第12期1093-1103,共11页
BACKGROUND Mesenchymal stem cells(MSCs)are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases.Diabetes mellitus(DM)is a frequently diagnosed chronic diseas... BACKGROUND Mesenchymal stem cells(MSCs)are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases.Diabetes mellitus(DM)is a frequently diagnosed chronic disease characterized by hyperglycemia which initiates many multisystem complications in the long-run.DM patients can benefit from MSCs transplantation to curb down the pathological consequences associated with hyperglycemia persistence and restore the function of damaged tissues.MSCs therapeutic outcomes are found to last for short period of time and ultimately these regenerative cells are eradicated and died in DM disease model.AIM To investigate the impact of high glucose or hyperglycemia on the cellular and molecular characteristics of MSCs.METHODS Human adipose tissue-derived MSCs(hAD-MSCs)were seeded in low(5.6 mmol/L of glucose)and high glucose(25 mmol/L of glucose)for 7 d.Cytotoxicity,viability,mitochondrial dynamics,and apoptosis were deplored using specific kits.Western blotting was performed to measure the protein expression of phosphatidylinositol 3-kinase(PI3K),TSC1,and mammalian target of rapamycin(mTOR)in these cells.RESULTS hAD-MSCs cultured in high glucose for 7 d demonstrated marked decrease in their viability,as shown by a significant increase in lactate dehydrogenase(P<0.01)and a significant decrease in Trypan blue(P<0.05)in these cells compared to low glucose control.Mitochondrial membrane potential,indicated by tetramethylrhodamine ethyl ester(TMRE)fluorescence intensity,and nicotinamide adenine dinucleotide(NAD+)/NADH ratio were significantly dropped(P<0.05 for TMRE and P<0.01 for NAD+/NADH)in high glucose exposed hAD-MSCs,indicating disturbed mitochondrial function.PI3K protein expression significantly decreased in high glucose culture MSCs(P<0.05 compared to low glucose)and it was coupled with significant upregulation in TSC1(P<0.05)and downregulation in mTOR protein expression(P<0.05).Mitochondrial complexes I,IV,and V were downregulated profoundly in high glucose(P<0.05 compared to low glucose).Apoptosis was induced as a result of mitochondrial impairment and explained the poor survival of MSCs in high glucose.CONCLUSION High glucose impaired the mitochondrial dynamics and regulatory proteins in hAD-MSCs ensuing their poor survival and high apoptosis rate in hyperglycemic microenvironment. 展开更多
关键词 Mesenchymal stem cells High glucose mitochondrial dynamics Apoptosis Poor survival Phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway
下载PDF
Optic nerve injury-induced regeneration in the adult zebrafish is accompanied by spatiotemporal changes in mitochondrial dynamics
3
作者 An Beckers Luca Masin +7 位作者 Annelies Van Dyck Steven Bergmans Sophie Vanhunsel Anyi Zhang Tine Verreet Fabienne EPoulain Karl Farrow Lieve Moons 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第1期219-225,共7页
Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope ... Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope with this high energy demand.We previously showed that in adult zebrafish,subjected to an optic nerve crush,an antagonistic axon-dendrite interplay exists wherein the retraction of retinal ganglion cell dendrites is a prerequisite for effective axonal repair.We postulate a‘dendrites for regeneration’paradigm that might be linked to intraneuronal mitochondrial reshuffling,as ganglion cells likely have insufficient resources to maintain dendrites and restore axons simultaneously.Here,we characterized both mitochondrial distribution and mitochondrial dynamics within the different ganglion cell compartments(dendrites,somas,and axons)during the regenerative process.Optic nerve crush resulted in a reduction of mitochondria in the dendrites during dendritic retraction,whereafter enlarged mitochondria appeared in the optic nerve/tract during axonal regrowth.Upon dendritic regrowth in the retina,mitochondrial density inside the retinal dendrites returned to baseline levels.Moreover,a transient increase in mitochondrial fission and biogenesis was observed in retinal ganglion cell somas after optic nerve damage.Taken together,these findings suggest that during optic nerve injury-induced regeneration,mitochondria shift from the dendrites to the axons and back again and that temporary changes in mitochondrial dynamics support axonal and dendritic regrowth after optic nerve crush. 展开更多
关键词 axonal regeneration central nervous system dendrite remodeling energy metabolism FISSION mitochondria mitochondrial trafficking optic nerve crush retina zebrafish
下载PDF
FAM210A:Implications in mitochondrial dynamics and metabolic health
4
作者 Han Lou Henghui Xu Yong Zhang 《Frigid Zone Medicine》 2023年第4期196-198,共3页
Brown adipose tissue(BAT),crucial for mammalian thermoregulation and energy metabolism,boasts a dense concentration of mitochondria.As a vital cellular organelle,mitochondria undergo substantial remodeling in cold env... Brown adipose tissue(BAT),crucial for mammalian thermoregulation and energy metabolism,boasts a dense concentration of mitochondria.As a vital cellular organelle,mitochondria undergo substantial remodeling in cold environments,playing a pivotal role in maintaining body temperature and energy balance[1].Mitochondrial dynamics. 展开更多
关键词 METABOLISM environments dynamics
原文传递
Hypoxia promotes pulmonary vascular remodeling via HIF-1α to regulate mitochondrial dynamics 被引量:6
5
作者 Xi CHEN Jia-Mei YAO +5 位作者 Xia FANG Cui ZHANG Yu-Shu YANG Cheng-Ping HU Qiong CHEN Guang-Wei ZHONG 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2019年第12期855-871,共17页
Background Increasing research suggests that mitochondrial defect plays a major role in pulmonary hypertension(PH) pathogenesis. Mitochondrial dynamics and quality control have a central role in the maintenance of the... Background Increasing research suggests that mitochondrial defect plays a major role in pulmonary hypertension(PH) pathogenesis. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation and apoptosis balance. However, the molecular mechanism underlying of this balance is still unknown. Methods To clarify the biological effects of hypoxic air exposure and hypoxia-inducible factor-1α(HIF-1α) on pulmonary arterial smooth muscle cell(PASMC) and pulmonary arterial hypertension rats, the cells were cultured in a hypoxic chamber under oxygen concentrations. Cell viability, reactive oxygen species level, cell death, mitochondrial morphology, mitochondrial membrane potential, mitochondrial function and mitochondrial biosynthesis, as well as fission-and fusion-related proteins, were measured under hypoxic conditions. In addition, rats were maintained under hypoxic conditions, and the right ventricular systolic pressure, right ventricular hypertrophy index and right ventricular weight/body weight ratio were examined and recorded. Further, we assessed the role of HIF-1α in the development and progression of PH using HIF-1α gene knockdown using small interfering RNA transfection. Mdivi-1 treatment was performed before hypoxia to inhibit dynamin-related protein 1(Drp1). Results We found that HIF-1α expression was increased during hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and hypoxia-stimulated PASMCs proliferation and apoptosis. We also found that targeting mitochondrial fission Drp1 by mitochondrial division inhibitor Mdivi-1 was effective in PH model rats. The results showed that mitochondrial dynamics were involved in the pulmonary vascular remodeling under hypoxia in vivo and in vitro. Furthermore, HIF-1α also modulated mitochondrial dynamics in pulmonary vascular remodeling under hypoxia through directly regulating the expression of Drp1. Conclusions In conclusion, our data suggests that abnormal mitochondrial dynamics could be a marker for the early diagnosis of PH and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in PH. 展开更多
关键词 Dynamin-related protein 1 HYPOXIA Hypoxia-inducible factor-1α mitochondrial dynamics Pulmonary vascular remodeling
下载PDF
Rescue axonal defects by targeting mitochondrial dynamics in hereditary spastic paraplegias 被引量:1
6
作者 Yongchao Mou Xue-Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期574-577,共4页
Impaired axonal development and degeneration underlie debilitating neurodegenerative diseases including hereditary spastic paraplegia, a large group of inherited diseases. Hereditary spastic paraplegia is caused by re... Impaired axonal development and degeneration underlie debilitating neurodegenerative diseases including hereditary spastic paraplegia, a large group of inherited diseases. Hereditary spastic paraplegia is caused by retrograde degeneration of the long corticospinal tract axons, leading to progressive spasticity and weakness of leg and hip muscles. There are over 70 subtypes with various underlying pathophysiological processes, such as defective vesicular trafficking, lipid metabolism, organelle shaping, axonal transport, and mitochondrial dysfunction. Although hereditary spastic paraplegia consists of various subtypes with different pathological characteristics, defects in mitochondrial morphology and function emerge as one of the common cellular themes in hereditary spastic paraplegia. Mitochondrial morphology and function are remodeled by mitochondrial dynamics regulated by several key fission and fusion mediators. However, the role of mitochondrial dynamics in axonal defects of hereditary spastic paraplegia remains largely unknown. Recently, studies reported perturbed mitochondrial morphology in hereditary spastic paraplegia neurons. Moreover, downregulation of mitochondrial fission regulator dynamin-related protein 1, both pharmacologically and genetically, could rescue axonal outgrowth defects in hereditary spastic paraplegia neurons, providing a potential therapeutic target for treating these hereditary spastic paraplegia. This mini-review will describe the regulation of mitochondrial fission/fusion, the link between mitochondrial dynamics and axonal defects, and the recent progress on the role of mitochondrial dynamics in axonal defects of hereditary spastic paraplegia. 展开更多
关键词 HEREDITARY SPASTIC PARAPLEGIA AXONAL degeneration mitochondrial dynamics fission fusion dynamin-related protein 1 mitochondrial dysfunction induced PLURIPOTENT stem cells
下载PDF
Mitochondrial dynamics as a therapeutic target for Alzheimer disease
7
作者 ZHU Xiong-wei 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2017年第5期458-459,共2页
Mitochondrial dysfunction is an early prominent feature in susceptible neurons in the brain of patients with Alzheimer′s disease which likely plays a critical role in the pathogenesis of disease. Mitochondria are dyn... Mitochondrial dysfunction is an early prominent feature in susceptible neurons in the brain of patients with Alzheimer′s disease which likely plays a critical role in the pathogenesis of disease. Mitochondria are dynamic organelles and the balance of mitochondrial fission and fusion determines Our initial studies revealed an imbalance in mitochondrial fission and fusion in fibroblasts from sporadic AD patients compared with normal healthy fibroblasts from age-matched control patients. Later it was demonstrated that overexpression of familial Alzheimer disease(FAD)-causing AβPP mutant or exposure to soluble Aβ oligomers led to mitochondrial fragmentation and redistribution in neuronal cells along with altered expression of mitochondrial fission/fusion proteins. Marked mitochondrial fragmentation and abnormal mitochondrial distribution in the pyramidal neurons along with mitochondrial dysfunction in the brain of AD mouse model CRND8 as early as three months of age before the accumulation of amyloid pathology. Importantly,we demonstrate significant changes in the expression and distribution of mitochondrial fission and fusion proteins in vivo in AD in consistent with a shifted mitochondrial dynamics towards excessive fission. Most recently,we demonstrated that genetic and pharmaceutical methods to rescue mitochondrial morphology and distribution could effectively restore Aβ-induced mitochondrial function and alleviate synaptic dysfunction both in vitro and in vivo,suggesting a causal involvement of mitochondrial dynamics in mediating Aβ-induced mitochondrial dysfunction. Taken together,we suggest that such a fundamental shift in mitochondrial dynamics negatively impacts all aspect of mitochondrial function such as impaired bioenergetics,increased structural damage and ROS production and loss of mt DNA integrity which causes synaptic dysfunction and neuronal dysfunction that is critical to AD pathogenesis. Therefore,strategies to modify abnormal mitochondrial dynamics may be an attractive therapeutic intervention target for AD. 展开更多
关键词 Alzheimer disease mitochondrial
下载PDF
Effect of Red <i>Panax ginseng</i>on Mitochondrial Dynamics and Bioenergetics in HaCaT Cells Exposed to Urban Pollutants
8
作者 Gallic Beauchef Magali Favre-Mercuret +3 位作者 Beatrice Blanc Richard Fitoussi Katell Vié Nathalie Compagnone 《Journal of Cosmetics, Dermatological Sciences and Applications》 2021年第2期84-95,共12页
<strong>Background:</strong> Urban air pollution contributes to lung and cardiovascular system dysfunction, making it a major concern for human health. Its impact on skin integrity, associated with increas... <strong>Background:</strong> Urban air pollution contributes to lung and cardiovascular system dysfunction, making it a major concern for human health. Its impact on skin integrity, associated with increased occurrence of atopic dermatitis, is now recognized, but its cellular mechanisms remain poorly understood. <strong>Objective:</strong> In the present study we aimed at establishing the impact of urban pollutant on mitochondrial dynamics and bioenergetics using the HaCaT cell model. We also sought to establish the protective effect of ECH-5195 (red <em>Panax ginseng</em> extract), standardized in ginsenosides, in reversing pollution-induced mitochondrial defects. <strong>Methods:</strong> Urban pollution exposure was mimicked by 1 h exposure of HaCaT cells with standardized atmospheric particulate matter containing PAHs, nitro-PAHs, PCB congeners, and chlorinated pesticides with a mean particulate diameter of 5.85 μm (SRM1648). <strong>Results:</strong> The presence of urban pollutant in the cultures increased the prevalence of hyperfission by 1.41-fold (p = 0.023) and fission by 1.35 fold (p = 0.006) in the reticular mitochondrial network. ECH-5195 reduced both pollution-induced hyperfission by 0.54-fold (p = 0.004) and fission by 0.68-fold (p = 0.0006) normalizing the mitochondrial reticular network. Pollution exposure was associated with a significant reduction of basal OCR and increased lactate production, pushing the cell to rely on glycolysis for ATP production. When ECH-5195 was used, OCR was significantly increased, and the glycolytic contribution to ATP production was reduced while both oxidative phosphorylation and mitochondrial respiration were increased demonstrating mitochondrial re-engagement in ATP production. <strong>Conclusions:</strong> Pollution exposure was disruptive for both the mitochondrial network dynamics and mitochondrial respiration. Ginsenosides in ECH-5195 efficiently protected both from pollution-induced defects. 展开更多
关键词 GINSENOSIDES Arylhydrocarbon Receptor Particulate Matter HaCaT Cells Mitochondria dynamics Cell Bioenergetics
下载PDF
Characterization,expression dynamics,and potential function of OPA1 for regulation of mitochondrial morphology during spermiogenesis in Phascolosoma esculenta
9
作者 Xinming GAO Binbin FENG +4 位作者 Chen DU Congcong HOU Shan JIN Daojun TANG Junquan ZHU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期187-200,共14页
Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular c... Mitochondria undergo morphological changes during spermatogenesis in some animals.The mechanism and role of mitochondrial morphology regulation,however,remain somewhat unclear.In this study,we analyzed the molecular characteristics,expression dynamics and subcellular localization of optic atrophy protein 1(OPA1),a mitochondrial fusion and cristae maintenance-related protein,to reveal the possible regulatory mechanisms underlying mitochondrial morphology in Phascolosoma esculenta spermiogenesis.The full-length cDNA of the P.esculenta opa1 gene(Pe-opa1)is 3743 bp in length and encodes 975 amino acids.The Pe-OPA1 protein is highly conservative and includes a transmembrane domain,a GTPase domain,two helical bundle domains,and a lipid-interacting stalk.Gene and protein expression was higher in the coelomic fluid(a site of spermatid development)of male P.esculenta and increased first and then decreased from March to December.Moreover,their expression during the breeding stage was significantly higher than during the non-breeding stage,suggesting that Pe-OPA1 is involved in P.esculenta reproduction.The Pe-OPA1 protein was more abundant in components consisting of many spermatids than in components without,indicating that Pe-OPA1 mainly plays a role in the spermatid in coelomic fluid.Moreover,Pe-OPA1 was mainly detected in the spermatid mitochondria.Immunofluorescence experiments showed that the Pe-OPA1 are constitutively expressed and co-localized with mitochondria during spermiogenesis,suggesting its involvement in P.esculenta spermiogenesis.These results provide evidence for Pe-OPA1's involvement in the regulation of mitochondrial morphology during spermiogenesis. 展开更多
关键词 optic atrophy protein 1(OPA1) SPERMIOGENESIS Phascolosoma esculenta mitochondrial dynamics SPERMATID
下载PDF
Mitochondrial recruitment in myelin:an anchor for myelin dynamics and plasticity?
10
作者 Jean-David M.Gothié Timothy E.Kennedy 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1401-1402,共2页
Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane... Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane,which wraps around an axon to form a compact multi-layered sheath.Myelin is composed of a substantially higher proportion of lipids compared to other biological membranes and enriched in a small number of specialized proteins. 展开更多
关键词 PLASTICITY insulation dynamics
下载PDF
Changes of mitochondrial dynamics during the progression of non-alcoholic fatty liver disease: a review
11
作者 Man-Na Li Ling Yang +5 位作者 Huan-Tian Cui Jia-Bao Liao Ning Wang Jing Miao Ying Zhang Hai-Di Wang 《Biomedical Engineering Communications》 2024年第1期15-20,共6页
Non-alcoholic fatty liver disease(NAFLD)is a chronic liver disease closely related to metabolic disorders that pose a serious threat to human health.Currently,no specific drugs are available for treating the aetiology... Non-alcoholic fatty liver disease(NAFLD)is a chronic liver disease closely related to metabolic disorders that pose a serious threat to human health.Currently,no specific drugs are available for treating the aetiology of NAFLD in clinical practice.Mitochondria have various biological functions inside the cell.Studies have found that mitochondrial fission and fusion are closely related to NAFLD.Therefore,identifying therapeutic targets for NAFLD through mitochondrial fission and fusion is crucial.Particularly in the field of traditional Chinese medicine,good therapeutic effects have been achieved in the treatment of NAFLD by protecting mitochondrial fusion and fission.Therefore,this article reviews the relationship between mitochondrial dynamics and NAFLD as well as the treatment of NAFLD through the regulation of mitochondrial fission and fusion with traditional Chinese medicine to provide a reference for the clinical application of traditional Chinese medicine in regulating mitochondrial fission and fusion functions to treat NAFLD. 展开更多
关键词 mitochondrial dynamics NAFLD traditional Chinese medicine
下载PDF
Latest assessment methods for mitochondrial homeostasis in cognitive diseases
12
作者 Wei You Yue Li +4 位作者 Kaixi Liu Xinning Mi Yitong Li Xiangyang Guo Zhengqian Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期754-768,共15页
Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,sub... Mitochondria play an essential role in neural function,such as supporting normal energy metabolism,regulating reactive oxygen species,buffering physiological calcium loads,and maintaining the balance of morphology,subcellular distribution,and overall health through mitochondrial dynamics.Given the recent technological advances in the assessment of mitochondrial structure and functions,mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer’s disease,Parkinson’s disease,Huntington’s disease,mild cognitive impairment,and postoperative cognitive dysfunction.This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences,from the perspectives of energy metabolism,oxidative stress,calcium homeostasis,and mitochondrial dynamics(including fission-fusion,transport,and mitophagy). 展开更多
关键词 cognitive disorders mitochondrial dysfunction mitochondrial energy metabolism mitochondrial dynamics mitochondrial transport MITOPHAGY mitochondrial biogenesis oxidative stress calcium homeostasis
下载PDF
Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage
13
作者 Jiatong Zhang Qi Zhu +4 位作者 Jie Wang Zheng Peng Zong Zhuang Chunhua Hang Wei Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期825-832,共8页
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct facto... The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow.Mitochondria are directly affected by direct factors such as ischemia,hypoxia,excitotoxicity,and toxicity of free hemoglobin and its degradation products,which trigger mitochondrial dysfunction.Dysfunctional mitochondria release large amounts of reactive oxygen species,inflammatory mediators,and apoptotic proteins that activate apoptotic pathways,further damaging cells.In response to this array of damage,cells have adopted multiple mitochondrial quality control mechanisms through evolution,including mitochondrial protein quality control,mitochondrial dynamics,mitophagy,mitochondrial biogenesis,and intercellular mitochondrial transfer,to maintain mitochondrial homeostasis under pathological conditions.Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage.This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage,particularly mitochondrial quality control mechanisms.It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage. 展开更多
关键词 mitochondrial biogenesis mitochondrial dynamics mitochondrial dysfunction mitochondrial fission and fusion mitochondrial quality control MITOPHAGY subarachnoid hemorrhage
下载PDF
Mitochondrial dynamics in health and disease: mechanisms and potential targets
14
作者 Wen Chen Huakan Zhao Yongsheng Li 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2023年第10期4452-4476,共25页
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell,showcasing their plasticity and dynamic nature.These abilities allow them to effectively coordin... Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell,showcasing their plasticity and dynamic nature.These abilities allow them to effectively coordinate various cellular functions.Mitochondrial dynamics refers to the changing process of fission,fusion,mitophagy and transport,which is crucial for optimal function in signal transduction and metabolism.An imbalance in mitochondrial dynamics can disrupt mitochondrial function,leading to abnormal cellular fate,and a range of diseases,including neurodegenerative disorders,metabolic diseases,cardiovascular diseases and cancers.Herein,we review the mechanism of mitochondrial dynamics,and its impacts on cellular function.We also delve into the changes that occur in mitochondrial dynamics during health and disease,and offer novel perspectives on how to target the modulation of mitochondrial dynamics. 展开更多
关键词 FUNCTION FUNCTIONS dynamics
原文传递
The impact of demographic dynamics on food consumption and its environmental outcomes:Evidence from China 被引量:1
15
作者 Shaoting Li Xuan Chen +1 位作者 Yanjun Ren Thomas Glauben 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期414-429,共16页
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ... With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption. 展开更多
关键词 demographic dynamics food consumption environmental impacts nutrition intakes
下载PDF
Ultrafast magneto-optical dynamics in nickel(111)single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
16
作者 匡皓 余军潇 +3 位作者 陈洁 H.E.Elsayed-Ali 李润泽 Peter M.Rentzepis 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期65-69,共5页
With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within... With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within the linear excitation range reveals that electron-phonon coupling and dissipation of photon energy into the bulk of the crystal take tens of picoseconds.On the other hand,the observed spin dynamics indicate a longer time of about 120 ps.To further understand how the lattice degree of freedom is coupled with these dynamics may require the integration of an ultrafast diffraction probe. 展开更多
关键词 ultrafast spin dynamics non-equilibrium dynamics multi-probe
原文传递
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids with Rheology
17
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2024年第1期108-168,共61页
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ... This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon. 展开更多
关键词 THERMOVISCOELASTICITY RHEOLOGY Memory Finite Strain Finite Deformation Nonlinear dynamics Dynamic Bifurcation Ordered Rate Theories
下载PDF
Mitochondrial carrier homolog 2 increases malignant phenotype of human gastric epithelial cells and promotes proliferation,invasion,and migration of gastric cancer cells
18
作者 Jing-Wen Zhang Ling-Yan Huang +3 位作者 Ya-Ning Li Ying Tian Jia Yu Xiao-Fei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期991-1005,共15页
BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determi... BACKGROUND The precise role of mitochondrial carrier homolog 2(MTCH2)in promoting malignancy in gastric mucosal cells and its involvement in gastric cancer cell metastasis have not been fully elucidated.AIM To determine the role of MTCH2 in gastric cancer.METHODS We collected 65 samples of poorly differentiated gastric cancer tissue and adjacent tissues,constructed MTCH2-overexpressing and MTCH2-knockdown cell models,and evaluated the proliferation,migration,and invasion of human gastric epithelial cells(GES-1)and human gastric cancer cells(AGS)cells.The mito-chondrial membrane potential(MMP),mitochondrial permeability transformation pore(mPTP)and ATP fluorescence probe were used to detect mitochondrial function.Mitochondrial function and ATP synthase protein levels were detected via Western blotting.RESULTS The expression of MTCH2 and ATP2A2 in gastric cancer tissues was significantly greater than that in adjacent tissues.Overexpression of MTCH2 promoted colony formation,invasion,migration,MMP expression and ATP production in GES-1 and AGS cells while upregulating ATP2A2 expression and inhibiting cell apoptosis;knockdown of MTCH2 had the opposite effect,promoting overactivation of the mPTP and promoting apoptosis.CONCLUSION MTCH2 can increase the malignant phenotype of GES-1 cells and promote the proliferation,invasion,and migration of gastric cancer cells by regulating mitochondrial function,providing a basis for targeted therapy for gastric cancer cells. 展开更多
关键词 Gastric cancer mitochondrial carrier homolog 2 ATP synthase ATP2A2 mitochondrial permeability transformation pore
下载PDF
Resveratrol combats chronic diseases through enhancing mitochondrial quality
19
作者 Weichu Tao Hu Zhang +1 位作者 Xia Jiang Ning Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期597-610,共14页
Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammat... Resveratrol(RSV),as a functional food component extracted from natural plants,has been widely studied and recognized in preventing and treating various diseases,with major mechanisms including executing anti-inflammation and anti-oxidation functions,and improving mitochondrial quality.Chronic diseases as non-communicable diseases are mainly caused by multiple factors,such as physiological decline and dysfunction in the body,and have become a significant challenge on public health worldwide.It is worth noting that chronic diseases such as Alzheimer's disease(AD),Parkinson's disease(PD),muscle atrophy,cardiovascular disease,obesity,and cancer are accompanied by abnormal mitochondrial function.Therefore,targeted regulation of mitochondria may be a meaningful way to prevent and treat chronic diseases.Increasing evidence has confirmed that RSV is actively involved in regulating mitochondria,and it has become an essential consideration to prevent and treat chronic diseases through targeting mitochondria and improving corresponding functions.In this article,current studies on RSV to optimize mitochondrial quality for preventing and alleviating chronic disease are systematically summarized,which can provide a theoretical reference for the development of functional foods or drugs to combat chronic diseases. 展开更多
关键词 RESVERATROL Functional food mitochondrial quality Chronic disease ANTI-INFLAMMATION ANTI-OXIDATION
下载PDF
Low Selenium and Low Protein Exacerbate Myocardial Damage in Keshan Disease by Affecting the PINK1/Parkin-mediated Mitochondrial Autophagy Pathway
20
作者 Li-wei ZHANG Hong-qi FENG +1 位作者 Song-bo FU Dian-jun SUN 《Current Medical Science》 SCIE CAS 2024年第1期93-101,共9页
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ... Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway. 展开更多
关键词 Keshan disease low selenium and low protein myocardial mitochondrial injury PTEN induced putative kinase 1(PINK1)/Parkin mitochondrial autophagy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部