The mixed-cation lead halide perovskites have emerged as a new class of promising light harvesting materials for solar cells. The formamidinium(FA), methylammonium(MA) and Cs cations are widely studied in the fiel...The mixed-cation lead halide perovskites have emerged as a new class of promising light harvesting materials for solar cells. The formamidinium(FA), methylammonium(MA) and Cs cations are widely studied in the field of mixed-cation perovskites. Here, we have investigated ethylammonium(EA) as an alternative cation to fabricate a mixed-cation perovskite of MA_(1-x)EA_xPbI_3. We have characterized the materials using the X-ray diffraction(XRD), scanning electron microscope(SEM), and UV–vis spectrum. Our results have confirmed the successful incorporation of EA cations into MAPbI_3. Interestingly, the optimal amount of EA to achieve the best performance is quite low. This is different from the FA–MA mixed-cation perovskites although EA and FA have similar radii. In short, the EA–MA mixed-cation perovskite has some material and device properties highly distinguishable from the FA–MA one.展开更多
基金the support of the NSFC(Grant 51372151 and21303103)Huoyingdong Grant(151046)
文摘The mixed-cation lead halide perovskites have emerged as a new class of promising light harvesting materials for solar cells. The formamidinium(FA), methylammonium(MA) and Cs cations are widely studied in the field of mixed-cation perovskites. Here, we have investigated ethylammonium(EA) as an alternative cation to fabricate a mixed-cation perovskite of MA_(1-x)EA_xPbI_3. We have characterized the materials using the X-ray diffraction(XRD), scanning electron microscope(SEM), and UV–vis spectrum. Our results have confirmed the successful incorporation of EA cations into MAPbI_3. Interestingly, the optimal amount of EA to achieve the best performance is quite low. This is different from the FA–MA mixed-cation perovskites although EA and FA have similar radii. In short, the EA–MA mixed-cation perovskite has some material and device properties highly distinguishable from the FA–MA one.