The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effect...The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.展开更多
In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A num...In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A numerical method based on finite volume method is used to discretize the governing equations. At the inlet of the channel, pulsating velocity is imposed for a range of Strouhal numbers Stpfrom 0 to 1 and amplitude Apfrom 0 to 0.5. The effects of the governing parameters, such as frequency and amplitude of the pulsation, Richardson number, Ri, and aspect ratio of the cavity, L/H, on the flow field, temperature distribution, average Nusselt number and average entropy generation, are numerically analyzed. The results indicate that the heat transfer and entropy generation are strongly affected by the frequency and amplitude of the pulsation and this depends on the Richardson number and aspect ratio of the cavity. The pulsation is more effective with the aspect ratio of the cavity L/H= 1.5 in terms of heat transfer enhancement and entropy generation minimization.展开更多
In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteris- tics is analyzed, assuming the flow is steady...In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteris- tics is analyzed, assuming the flow is steady and blood is treated as Williamson fluid. The effects of mixed convection heat and mass transfer are also carried out. Perturbation solutions have been calculated for velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest. Streamlines have been plotted at the end of the paper.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10972136) and the Doctoral Fund for New Teachers of Higher Eduation of China (No. 20090073120014)
文摘The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanopavticle concentration distributions are obtained. The effects of the Brownian motion parameter Nb, the thermophoresis parameter Nt, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.
文摘In this study, the entropy generation and the heat transfer of pulsating air flow in a horizontal channel with an open cavity heated from below with uniform temperature distribution are numerically investigated. A numerical method based on finite volume method is used to discretize the governing equations. At the inlet of the channel, pulsating velocity is imposed for a range of Strouhal numbers Stpfrom 0 to 1 and amplitude Apfrom 0 to 0.5. The effects of the governing parameters, such as frequency and amplitude of the pulsation, Richardson number, Ri, and aspect ratio of the cavity, L/H, on the flow field, temperature distribution, average Nusselt number and average entropy generation, are numerically analyzed. The results indicate that the heat transfer and entropy generation are strongly affected by the frequency and amplitude of the pulsation and this depends on the Richardson number and aspect ratio of the cavity. The pulsation is more effective with the aspect ratio of the cavity L/H= 1.5 in terms of heat transfer enhancement and entropy generation minimization.
文摘In this paper, the blood flow through a tapered artery with a stenosis by considering axially non-symmetric but radially symmetric mild stenosis on blood flow characteris- tics is analyzed, assuming the flow is steady and blood is treated as Williamson fluid. The effects of mixed convection heat and mass transfer are also carried out. Perturbation solutions have been calculated for velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest. Streamlines have been plotted at the end of the paper.