Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study are...Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study area, which is located in the southwestern corner of the Arabian Peninsula bounded by the Red Sea and the Gulf of Aden. In this work, a 3D Moho depth model of the study area is constructed for the first time by inverting gravity data from the Earth Gravitational Model(EGM2008) using the ParkerOldenburg algorithm. This model indicates the shallow zone is situated at depths of 20 km to 24 km beneath coastal plains, whereas the deep zone is located below the plateau at depths of 30 km to 35 km and its deepest part coincides mainly with the Dhamar-Rada ’a Quaternary volcanic field. The results also indicate two channels of hot magmatic materials joining both the Sana’a-Amran Quaternary volcanic field and the Late Miocene Jabal An Nar volcanic area with the Dhamar-Rada’a volcanic field. This conclusion is supported by the widespread geothermal activity(of mantle origin) distributed along these channels,isotopic data, and the upper mantle low velocity zones indicated by earlier studies.展开更多
On the basis of MTS and DSS data in and near Tianshui region,the deep structure contour of the region was expounded.The regional distribution of the high conductive layer near the Moho in the region becomes one of th...On the basis of MTS and DSS data in and near Tianshui region,the deep structure contour of the region was expounded.The regional distribution of the high conductive layer near the Moho in the region becomes one of the most obvious characters of the conductivity structure in the crust and mantle,and it is corresponding to the low S wave velocity zone near the Moho and is guessed as the transitional zone between the crust and mantle in the region.In this paper,the behaviour of medium and the thermodynamic circumstance of the conductive low shear velocity layer near the Moho were demonstrated emphatically,and the cause of formation of the layer was roughly explained under specified conditions of geographical environment and deep structure characters in this region.展开更多
The P receiver function includes P-to-SV converted phases and multiple reverberations of the discontinuities in the crust and mantle.The time of these phases is related to the crustal thickness and vp/vs ratio,and the...The P receiver function includes P-to-SV converted phases and multiple reverberations of the discontinuities in the crust and mantle.The time of these phases is related to the crustal thickness and vp/vs ratio,and the amplitude of these phases is mainly controlled by the velocity and density contrast of interfaces.By using H-κstacking method,this work estimated the crustal thickness and vP/vS ratio beneath the stations in the Guangdong province of South China.The velocity and density contrast(δβ-δρ)scanning stacking algorithm of the receiver function is applied to constrain the velocity and density contrast of the Moho in Guangdong province.This work analyzed the results of the crustal thickness,vp/vS ratio,and the velocity and density contrasts of Moho.The results indicate that the velocity contrast is higher beneath Yangjiang area in western Guangdong province and Nanao area in eastern Guangdong,which has a strong correlation with the distribution of geothermal springs in local areas and the characteristics of high heat flow.The velocity contrast of Moho has also a good correlation with the vP/vS ratio and the crustal thickness,which indicates that there is a strong material composition contrasts of the Moho in the study area.Velocity and density contrasts of Moho in some local area(such as western Guangdong)are somewhat consistent with the seismic activities.展开更多
Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China....Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.展开更多
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
In large continental orogens, an important research topic is the behavior of deep crustal and upper mantle deformation, and the flow styles of ductile material. The morphology of the eastern margin of the Tibetan plat...In large continental orogens, an important research topic is the behavior of deep crustal and upper mantle deformation, and the flow styles of ductile material. The morphology of the eastern margin of the Tibetan plateau, adjacent to the Sichuan basin, is characterized by very steep relief with high mountain ranges. The crust beneath this region slows the velocities in the middle and lower crust. We have adopted a relatively dense network to inverse the detailed structure of the crust and upper mantle along the eastern margin of the Tibetan plateau and Sichuan basin, using teleseismic data via receiver function analysis. The results are in-line with the hypothesis that viscous crustal material is flowing beneath the eastern margin of the Tibetan plateau and that this process drives overlying crustal material around the strong and rigid Sichuan basin. When the viscous material hits this obstruction, flows are divided into two or more branches with different directions. The upper part of the upwelling viscous flow produces the pressure to intrude the upper crust, thereby driving uplift of mountain ranges and high peaks. In contrast, the lower part of the downwelling viscous flow produces the pressure to intrude the lower crust and upper mantle to deepen the Moho discontinuity, causing observed crustal thickening.展开更多
The study area is located in the south western Cameroon and includes part of the Cameroon Volcanic Line (CVL). Volcanic activity has been recorded in this area, precisely on the Mount Cameroon which recently erupted i...The study area is located in the south western Cameroon and includes part of the Cameroon Volcanic Line (CVL). Volcanic activity has been recorded in this area, precisely on the Mount Cameroon which recently erupted in 2002. In addition, deadly carbonic gas was emitted by crater lakes (Monoun and Nyos) in 1984 and 1986 respectively. Potential field model EGM2008 has been used to investigate the structure of the crust. A regional/residual separation is performed using upward continuation and polynomial separation methods. The results from this operation show a similarity between the regional anomalies resulting from both methods. The regional anomaly maps present an increasing gradient trending ENE-WSW above and below latitude 5?N. Moreover, six nearly parallel profiles were drawn on the CVL in addition to two other profiles at the northern edge of Congo craton. These profiles were used to estimate the depths of the Moho discontinuity and some shallow sources by the means of the Bouguer and the residual anomalies respectively. The results show that the Moho discontinuity depths vary from 19 - 25 km (under Mount Cameroon) to 28 - 34 km (in Kumbo), while the southern neighbouring zone presents a Moho discontinuity depth ranging between 23 - 31 km (in Ngambe) and 22 - 32 km (in Eseka). These findings agree with the previous seismic and gravity researches lead in the area. EGM2008 is therefore a reliable tool to investigate the subsurface structures.展开更多
Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China, little is known about its deep structure. In this study, we use the existing Bouguer gravity data to...Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China, little is known about its deep structure. In this study, we use the existing Bouguer gravity data to study the middle section of the Tanlu fault zone, which is also known as the Yishu fault zone. Our gravity inversion results indicate that the Moho has an abrupt offset in depth at the Tanlu fault zone and it has a relatively smooth variation away from the fault zone. The crustal structures on both sides are different from each other. Sediment is thin on the west side with an average thickness of less than 5 km, while it is as thick as 6 km on the east side. The thinnest sediment (3-4 km) is at the fault zone. Moho depth increases from 33 to 34 km on east side and from 36 to 38 km on west side. Tanlu fault zone is shown as a wide zone of linear gradient in the Bouguer gravity anomaly.展开更多
Based on the P wave first arrival time data of 275 local earthquakes recorded by Kunming Telemetered Seismic Network from 1982 to 1989, a 3-D velocity structure beneath the network was obtained by the separationmethod...Based on the P wave first arrival time data of 275 local earthquakes recorded by Kunming Telemetered Seismic Network from 1982 to 1989, a 3-D velocity structure beneath the network was obtained by the separationmethod of focal parameter and medium structure parameter and 3-D approximate ray tracing. In view of 'thesituation that the intervals between stations in the network is relatively long, and the local first arrival phasemay be Pn instead of P, so we simulated Pn as the diving wave from the layer beneath Moho and using approximate ray tracing method on the grid model. The final 3-D velocity structure is basically consistent withthe result from the deep seismic sounding and the anomaly inversion of Bouguer gravity. The Dianzhong area(in the vicinity of Dukou and Chuxiong) shows an obvious high velocity zone at depth of 45 km, which canbe interpreted as the uplift of Moho discontinuity. The upper crust in this area displays lower velocity zone,so the uplift of Moho discontinuity is considered as the result of isostatic compensation. The configuration ofvelocity contours indicates that the upper crust and lower crust are complicated, while the middle crust is relatively simple. This feature reveals that Yunnan area belongs to modern tectonically active region. As themain boundary of the major tectonic units in the study area, although there is no obvious evidence about lowvelocity anomaly zone along the Red River Fault, the fault shows up th feature of sturctural divide on themid-lower crustal velocity contours, and it is inferred that the fault passes through the Moho-discontinuity atleast.展开更多
In this paper the fine structure of crust mantle transition zone in Western Yunnan Province is analysed and discussed based on the reflection phases from Moho discontinuity in Project Western Yunnan 86~87. ...In this paper the fine structure of crust mantle transition zone in Western Yunnan Province is analysed and discussed based on the reflection phases from Moho discontinuity in Project Western Yunnan 86~87. It shows that in two points: in the north 27.64 km from shot point Jinggu and south 58.74 km from shot point Zhiti, there are transition zones of group of thin layers with inverse velocity.These two reflection points are both situated in the lower velocity anomaly zone in the top of upper mantle. The crust of this region is more seismicity. Maybe the unusual structure of this transition zone is related with the characteristics of this region. This paper discusses the possible geological interpretation model for this transition zone, and also makes suggestion about its application in earthquake prediction.展开更多
文摘Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study area, which is located in the southwestern corner of the Arabian Peninsula bounded by the Red Sea and the Gulf of Aden. In this work, a 3D Moho depth model of the study area is constructed for the first time by inverting gravity data from the Earth Gravitational Model(EGM2008) using the ParkerOldenburg algorithm. This model indicates the shallow zone is situated at depths of 20 km to 24 km beneath coastal plains, whereas the deep zone is located below the plateau at depths of 30 km to 35 km and its deepest part coincides mainly with the Dhamar-Rada ’a Quaternary volcanic field. The results also indicate two channels of hot magmatic materials joining both the Sana’a-Amran Quaternary volcanic field and the Late Miocene Jabal An Nar volcanic area with the Dhamar-Rada’a volcanic field. This conclusion is supported by the widespread geothermal activity(of mantle origin) distributed along these channels,isotopic data, and the upper mantle low velocity zones indicated by earlier studies.
文摘On the basis of MTS and DSS data in and near Tianshui region,the deep structure contour of the region was expounded.The regional distribution of the high conductive layer near the Moho in the region becomes one of the most obvious characters of the conductivity structure in the crust and mantle,and it is corresponding to the low S wave velocity zone near the Moho and is guessed as the transitional zone between the crust and mantle in the region.In this paper,the behaviour of medium and the thermodynamic circumstance of the conductive low shear velocity layer near the Moho were demonstrated emphatically,and the cause of formation of the layer was roughly explained under specified conditions of geographical environment and deep structure characters in this region.
基金the National Key R&D Program of China(No.2017YFC1500100)National Natural Science Foundation of China(Nos.U1701641,41874052,41730211 and 41774049)+5 种基金Guangdong Province Introduced Innovative R&D Team(Nos.2017ZT07Z066 and 2016ZT06N331)Guangdong Science and Technology Plan Project(No.2017B030314082)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(No.3JH-201901051)Seismic Regime Tracking Project of CEA(No.2020010111)Some figures were plotted with Generic Mapping Tools(Wessel and Smith,1995)The authors sincerely acknowledge the anonymous reviewers and journal editors for their help,support,checking and helpful comments to the manuscript.
文摘The P receiver function includes P-to-SV converted phases and multiple reverberations of the discontinuities in the crust and mantle.The time of these phases is related to the crustal thickness and vp/vs ratio,and the amplitude of these phases is mainly controlled by the velocity and density contrast of interfaces.By using H-κstacking method,this work estimated the crustal thickness and vP/vS ratio beneath the stations in the Guangdong province of South China.The velocity and density contrast(δβ-δρ)scanning stacking algorithm of the receiver function is applied to constrain the velocity and density contrast of the Moho in Guangdong province.This work analyzed the results of the crustal thickness,vp/vS ratio,and the velocity and density contrasts of Moho.The results indicate that the velocity contrast is higher beneath Yangjiang area in western Guangdong province and Nanao area in eastern Guangdong,which has a strong correlation with the distribution of geothermal springs in local areas and the characteristics of high heat flow.The velocity contrast of Moho has also a good correlation with the vP/vS ratio and the crustal thickness,which indicates that there is a strong material composition contrasts of the Moho in the study area.Velocity and density contrasts of Moho in some local area(such as western Guangdong)are somewhat consistent with the seismic activities.
基金Th is study was carried out during 2001-2003 and financially supposed by the National Natural Science Foundation of China(No.40074020)
文摘Based on gravity data processed with the matched filter, depth continuation and horizontal gradient we obtained the spatial distribution of the gravity field and made analyses of the tectonic framework of South China. Then, inversion was conducted for the depth to study the depth variation of the boundary between the crust and upper mantle, namely the Mohorovicic discontinuity (Moho). The results demonstrate that the Moho depth in South China ranges from 30 to 40 km, and the crust thins from west to east, 27-29 km under the continent margin and shallow sea. We think it possible that the Tanlu fault crosses the Yangtze River and extends southwards along the Ganjiang and Wuchuan-Sihui faults to the South China Sea, and that there is an E-W hidden structural belt along 24.5°-26°.
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金supported by National Natural Science Foundation of China under grant Nos. 40839909,41074062, and 40674040
文摘In large continental orogens, an important research topic is the behavior of deep crustal and upper mantle deformation, and the flow styles of ductile material. The morphology of the eastern margin of the Tibetan plateau, adjacent to the Sichuan basin, is characterized by very steep relief with high mountain ranges. The crust beneath this region slows the velocities in the middle and lower crust. We have adopted a relatively dense network to inverse the detailed structure of the crust and upper mantle along the eastern margin of the Tibetan plateau and Sichuan basin, using teleseismic data via receiver function analysis. The results are in-line with the hypothesis that viscous crustal material is flowing beneath the eastern margin of the Tibetan plateau and that this process drives overlying crustal material around the strong and rigid Sichuan basin. When the viscous material hits this obstruction, flows are divided into two or more branches with different directions. The upper part of the upwelling viscous flow produces the pressure to intrude the upper crust, thereby driving uplift of mountain ranges and high peaks. In contrast, the lower part of the downwelling viscous flow produces the pressure to intrude the lower crust and upper mantle to deepen the Moho discontinuity, causing observed crustal thickening.
文摘The study area is located in the south western Cameroon and includes part of the Cameroon Volcanic Line (CVL). Volcanic activity has been recorded in this area, precisely on the Mount Cameroon which recently erupted in 2002. In addition, deadly carbonic gas was emitted by crater lakes (Monoun and Nyos) in 1984 and 1986 respectively. Potential field model EGM2008 has been used to investigate the structure of the crust. A regional/residual separation is performed using upward continuation and polynomial separation methods. The results from this operation show a similarity between the regional anomalies resulting from both methods. The regional anomaly maps present an increasing gradient trending ENE-WSW above and below latitude 5?N. Moreover, six nearly parallel profiles were drawn on the CVL in addition to two other profiles at the northern edge of Congo craton. These profiles were used to estimate the depths of the Moho discontinuity and some shallow sources by the means of the Bouguer and the residual anomalies respectively. The results show that the Moho discontinuity depths vary from 19 - 25 km (under Mount Cameroon) to 28 - 34 km (in Kumbo), while the southern neighbouring zone presents a Moho discontinuity depth ranging between 23 - 31 km (in Ngambe) and 22 - 32 km (in Eseka). These findings agree with the previous seismic and gravity researches lead in the area. EGM2008 is therefore a reliable tool to investigate the subsurface structures.
基金National Natural Science Foundation of China (40125011) and Excelent Youth Foundation.
文摘Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China, little is known about its deep structure. In this study, we use the existing Bouguer gravity data to study the middle section of the Tanlu fault zone, which is also known as the Yishu fault zone. Our gravity inversion results indicate that the Moho has an abrupt offset in depth at the Tanlu fault zone and it has a relatively smooth variation away from the fault zone. The crustal structures on both sides are different from each other. Sediment is thin on the west side with an average thickness of less than 5 km, while it is as thick as 6 km on the east side. The thinnest sediment (3-4 km) is at the fault zone. Moho depth increases from 33 to 34 km on east side and from 36 to 38 km on west side. Tanlu fault zone is shown as a wide zone of linear gradient in the Bouguer gravity anomaly.
文摘Based on the P wave first arrival time data of 275 local earthquakes recorded by Kunming Telemetered Seismic Network from 1982 to 1989, a 3-D velocity structure beneath the network was obtained by the separationmethod of focal parameter and medium structure parameter and 3-D approximate ray tracing. In view of 'thesituation that the intervals between stations in the network is relatively long, and the local first arrival phasemay be Pn instead of P, so we simulated Pn as the diving wave from the layer beneath Moho and using approximate ray tracing method on the grid model. The final 3-D velocity structure is basically consistent withthe result from the deep seismic sounding and the anomaly inversion of Bouguer gravity. The Dianzhong area(in the vicinity of Dukou and Chuxiong) shows an obvious high velocity zone at depth of 45 km, which canbe interpreted as the uplift of Moho discontinuity. The upper crust in this area displays lower velocity zone,so the uplift of Moho discontinuity is considered as the result of isostatic compensation. The configuration ofvelocity contours indicates that the upper crust and lower crust are complicated, while the middle crust is relatively simple. This feature reveals that Yunnan area belongs to modern tectonically active region. As themain boundary of the major tectonic units in the study area, although there is no obvious evidence about lowvelocity anomaly zone along the Red River Fault, the fault shows up th feature of sturctural divide on themid-lower crustal velocity contours, and it is inferred that the fault passes through the Moho-discontinuity atleast.
文摘In this paper the fine structure of crust mantle transition zone in Western Yunnan Province is analysed and discussed based on the reflection phases from Moho discontinuity in Project Western Yunnan 86~87. It shows that in two points: in the north 27.64 km from shot point Jinggu and south 58.74 km from shot point Zhiti, there are transition zones of group of thin layers with inverse velocity.These two reflection points are both situated in the lower velocity anomaly zone in the top of upper mantle. The crust of this region is more seismicity. Maybe the unusual structure of this transition zone is related with the characteristics of this region. This paper discusses the possible geological interpretation model for this transition zone, and also makes suggestion about its application in earthquake prediction.