The Madurai Block in the Southern Granulite Terrane(SGT)of Peninsular India is one of the largest crustal blocks within the Neoproterozoic Gondwana assembly.This block is composed of three sub-blocks:the Neoarchean No...The Madurai Block in the Southern Granulite Terrane(SGT)of Peninsular India is one of the largest crustal blocks within the Neoproterozoic Gondwana assembly.This block is composed of three sub-blocks:the Neoarchean Northern Madurai block,Paleoproterozoic Central Madurai block and the dominantly Neoproterozoic Southern Madurai Block.The margins of these blocks are well-known for the occurrence of ultrahigh-temperature(UHT)granulite facies rocks mostly represented by Mg-Al metasediments.Here we report a dismembered layered mafic–ultramafic intrusion occurring in association with Mg-Al granulites from the classic locality of Ganguvarpatti in the Central Madurai Block.The major rock types of the layered intrusion include spinel orthopyroxenite,garnet-bearing gabbro,gabbro and gabbroic anorthosite showing rhythmic stratification and cumulate texture.The orthopyroxene-cordierite granulite from the associated Mg-Al layer is composed of spinel,cordierite and orthopyroxene.The pyroxene in both rock units is high-Al orthopyroxene formed under UHT metamorphic conditions.Conventional thermobarometry yields near-peak metamorphic conditions of 9.5–10 kbar pressure and a minimum temperature of 980℃.We computed P–T pseudosections and contoured for the compositional as well as modal isopleths of the major mineral phases,which yield temperature above 1000℃.FMAS petrogenetic grid,Al-in-orthopyroxene isopleth,conventional thermobarometry and calculated pseudosection reveal a clockwise pressure–temperature(P–T)path and near isothermal decompression.The U–Pb data on zircon grains from the layered magmatic suite indicate emplacement of the protolith at ca.2.0 Ga and the metamorphic overgrowths yield weighted ^(206)Pb/^(238)U mean ages ca.520 Ma.Monazite from the garnet-bearing gabbro and Opx-Crd granulite yielded ^(206)Pb/^(238)U weighted mean ages of ca.532 Ma and 523 Ma marking the timing of metamorphism.We correlate the layered intrusion to a Paleoproterozoic suprasubduction zone setting,defining the Ganguvarpatti area as part of a collisional suture assembling the Northern and Central Madurai Blocks.The Paleoproterozoic magmatism and late Neoproterozoic-Cambrian UHT metamorphism can be linked to the tectonics of the Columbia and Gondwana supercontinents.展开更多
The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB)in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt in...The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB)in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly>1.1,except for two samples with 1.09),high contents of SiO2(74.38-76.84 wt.%)and Al2 O3(12.46-14.05 wt.%)and variable CaO/Na2 O ratios(0.2-0.65)as well as high zirconδ18O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial 87Sr/86Sr ratios(0.6917-0.7101),and less radiogenicεNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negativeεHf(t)values in the range of-3.7 to-9.9 with mean TDM2(Nd)and TDM2(Hf)values of 1.57 Ga and 1.55 Ga.They show initial 207Pb/204Pb ranging from15.69 to 15.71 and 206Pb/204Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lowerδ18O values and higherεHf(t)values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/238U ages of 83.7±0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and 208Pb/232Th ages of 83.2±0.5 Ma,83.8±0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/238U ages of 83.5±0.4 Ma(MSWD=0.6),83.5±0.4 Ma(MSWD=0.5),83.6±0.4 Ma(MSWD=0.6)and 83.2±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous.展开更多
High-temperature magma generation process and granulite-facies metamorphism can provide important information about mantle-crustal interaction and tectonic evolution. The strongly peralu- minous monzonite pluton, the ...High-temperature magma generation process and granulite-facies metamorphism can provide important information about mantle-crustal interaction and tectonic evolution. The strongly peralu- minous monzonite pluton, the Jinshuikou cordierite granite on the southern margin of the Qaidam Block, can provide important information about the mantle-crustal interaction and constraints on tectonic tran- sition from Proto-Tethys to Paleo-Tethys. This pluton develops enclaves of mafic granulite, amphibolite and quartzofeldspathic rocks, and is cut by massive monzonitic leuco-granite veins. Zircon and monazite U-Pb dating for the cordierite granite, the granulite enclaves and a massive monzonitic leuco-granite vein reveal that the cordierite granitic magma was generated from Mesoproterozoic continental crust with protolith derived from a provenanee that was composed of 〉2.8 Ga old recycled crustal materials and re- corded a -1.7 Ga magmatic event. The continental crust underwent low-pressure granulite-facies metamorphism at -380 Ma ago, whereas the cordierite granite magmas was generated and emplaced during 380 Ma, followed by intrusion of the massive monzonitic leuco-granite vein at circa 370-330 Ma. These data suggest that after the final closure of Proto-Tethys Ocean spreading along the southern Qaidam Block at -420 Ma, break-off of the subducted slab or delamination of the lower crustal base and upwelling of the asthenospheric mantle beneath the southern Qaidam Block occurred before the Mid-Devonian, and that the initiation of the Paleo-Tethys tectonics might initiate near the end of Early-Carboniferous in the East Kunlun-Qaidam region, East Asia.展开更多
基金funded by Foreign Expert grants to M.Santosh from the China University of Geosciences(Beijing)。
文摘The Madurai Block in the Southern Granulite Terrane(SGT)of Peninsular India is one of the largest crustal blocks within the Neoproterozoic Gondwana assembly.This block is composed of three sub-blocks:the Neoarchean Northern Madurai block,Paleoproterozoic Central Madurai block and the dominantly Neoproterozoic Southern Madurai Block.The margins of these blocks are well-known for the occurrence of ultrahigh-temperature(UHT)granulite facies rocks mostly represented by Mg-Al metasediments.Here we report a dismembered layered mafic–ultramafic intrusion occurring in association with Mg-Al granulites from the classic locality of Ganguvarpatti in the Central Madurai Block.The major rock types of the layered intrusion include spinel orthopyroxenite,garnet-bearing gabbro,gabbro and gabbroic anorthosite showing rhythmic stratification and cumulate texture.The orthopyroxene-cordierite granulite from the associated Mg-Al layer is composed of spinel,cordierite and orthopyroxene.The pyroxene in both rock units is high-Al orthopyroxene formed under UHT metamorphic conditions.Conventional thermobarometry yields near-peak metamorphic conditions of 9.5–10 kbar pressure and a minimum temperature of 980℃.We computed P–T pseudosections and contoured for the compositional as well as modal isopleths of the major mineral phases,which yield temperature above 1000℃.FMAS petrogenetic grid,Al-in-orthopyroxene isopleth,conventional thermobarometry and calculated pseudosection reveal a clockwise pressure–temperature(P–T)path and near isothermal decompression.The U–Pb data on zircon grains from the layered magmatic suite indicate emplacement of the protolith at ca.2.0 Ga and the metamorphic overgrowths yield weighted ^(206)Pb/^(238)U mean ages ca.520 Ma.Monazite from the garnet-bearing gabbro and Opx-Crd granulite yielded ^(206)Pb/^(238)U weighted mean ages of ca.532 Ma and 523 Ma marking the timing of metamorphism.We correlate the layered intrusion to a Paleoproterozoic suprasubduction zone setting,defining the Ganguvarpatti area as part of a collisional suture assembling the Northern and Central Madurai Blocks.The Paleoproterozoic magmatism and late Neoproterozoic-Cambrian UHT metamorphism can be linked to the tectonics of the Columbia and Gondwana supercontinents.
基金financially supported by the China Geological Survey Program(Grant Nos.1212011121260,1212011220928)the National Natural Science Foundation of China(Project No.491755206)。
文摘The Gejiu-Bozushan-Laojunshan W-Sn polymetallic metallogenic belt(GBLB)in southeast Yunnan Province is an important part of the southwestern Yangtze Block in South China.Tin polymetallic mineralization in this belt includes the Niusipo,Malage,Songshujiao,Laochang and Kafang ore fields in the Gejiu area which are spatially and temporally associated with the Kafang-Laochang and Songshujiao granite plutons.These granites are characterized by variable A/CNK values(mostly>1.1,except for two samples with 1.09),high contents of SiO2(74.38-76.84 wt.%)and Al2 O3(12.46-14.05 wt.%)and variable CaO/Na2 O ratios(0.2-0.65)as well as high zirconδ18O values(7.74‰-9.86‰),indicative of S-type affinities.These rocks are depleted in Rb,Th,U,Ti,LREE[(La/Yb)N=1.4-20.51],Ba,Nb,Sr,and Ti and display strong negative Eu and Ba anomalies.The rocks possess high Rb/Sr and Rb/Ba ratios,relatively low initial 87Sr/86Sr ratios(0.6917-0.7101),and less radiogenicεNd(t)values(-8.0 to-9.1).The zircon grains from these rocks show negativeεHf(t)values in the range of-3.7 to-9.9 with mean TDM2(Nd)and TDM2(Hf)values of 1.57 Ga and 1.55 Ga.They show initial 207Pb/204Pb ranging from15.69 to 15.71 and 206Pb/204Pb from 18.36 to 18.70.Monazite from Songshujiao granites exhibits higher U and lower Th/U ratios,lowerδ18O values and higherεHf(t)values than those of the zircon grains in the KafangLaochang granites.The geochemical and isotopic features indicate that the Laochang-Kafang granites originated by partial melting of Mesoproterozoic crustal components including biotite-rich metapelite and metagraywacke,whereas the Songshujiao granites were derived from Mesoproterozoic muscovite-rich metapelite crustal source.Most zircon grains from the Songshujiao,Laochang and Kafang granites have high-U concentrations and their SIMS U-Pb ages show age scatter from 81.6 Ma to 88.6 Ma,80.7 Ma to 86.1 Ma and 82.3 Ma to 87.0 Ma,suggesting formation earlier than the monazite and cassiterite.Monazite SIMS U-Pb ages and Th-Pb ages of three same granite samples are consistent and show yielded 206 Pb/238U ages of 83.7±0.6 Ma,83.7±0.6 Ma,and 83.4±0.6 Ma,and 208Pb/232Th ages of 83.2±0.5 Ma,83.8±0.4 Ma,and 83.5±0.9 Ma,which are within the range of the SIMS zircon U-Pb ages from these rocks.The data constrain the crystallization of the granites at ca.83 Ma.In situ U-Pb dating of two cassiterite samples from the cassiterite-sulfide ore in the Songshujiao ore field and Kafang ore field,and two from the cassiterite-oxide+cassiterite bearing dolomite in the Laochang ore field yielded weighted mean 206 Pb/238U ages of 83.5±0.4 Ma(MSWD=0.6),83.5±0.4 Ma(MSWD=0.5),83.6±0.4 Ma(MSWD=0.6)and 83.2±0.7 Ma(MSWD=0.6),respectively.Combined with geological characteristics,the new geochronological data indicate that the formation of the granites and Sn polymetallic deposits are coeval.We correlate the magmatic and metallogenic event with lithospheric thinning and asthenosphere upwelling in continental extension setting in relation to the eastward subduction of the Neo-Tethys beneath the Sanjiang tectonic domain during Late Cretaceous.
基金supported by the National Natural Science Foundation of China(Nos.40972042,40772041,42072030)the Open Research Program of the Key Laboratory of Continental Dynamics,Northwest University
文摘High-temperature magma generation process and granulite-facies metamorphism can provide important information about mantle-crustal interaction and tectonic evolution. The strongly peralu- minous monzonite pluton, the Jinshuikou cordierite granite on the southern margin of the Qaidam Block, can provide important information about the mantle-crustal interaction and constraints on tectonic tran- sition from Proto-Tethys to Paleo-Tethys. This pluton develops enclaves of mafic granulite, amphibolite and quartzofeldspathic rocks, and is cut by massive monzonitic leuco-granite veins. Zircon and monazite U-Pb dating for the cordierite granite, the granulite enclaves and a massive monzonitic leuco-granite vein reveal that the cordierite granitic magma was generated from Mesoproterozoic continental crust with protolith derived from a provenanee that was composed of 〉2.8 Ga old recycled crustal materials and re- corded a -1.7 Ga magmatic event. The continental crust underwent low-pressure granulite-facies metamorphism at -380 Ma ago, whereas the cordierite granite magmas was generated and emplaced during 380 Ma, followed by intrusion of the massive monzonitic leuco-granite vein at circa 370-330 Ma. These data suggest that after the final closure of Proto-Tethys Ocean spreading along the southern Qaidam Block at -420 Ma, break-off of the subducted slab or delamination of the lower crustal base and upwelling of the asthenospheric mantle beneath the southern Qaidam Block occurred before the Mid-Devonian, and that the initiation of the Paleo-Tethys tectonics might initiate near the end of Early-Carboniferous in the East Kunlun-Qaidam region, East Asia.