In this paper, we establish global C 1,1/4 estimates for the Dirichlet problem for the Monge Ampère equation, which yield the corresponding existence and regularity results. Our conditions apply to both deg...In this paper, we establish global C 1,1/4 estimates for the Dirichlet problem for the Monge Ampère equation, which yield the corresponding existence and regularity results. Our conditions apply to both degenerate and nondegenerate cases.展开更多
This paper is concerned with the boundary behavior of strictly convex large solutions to the Monge–Ampère equation det D^2u(x) = b(x)f(u(x)), u >0, x∈Ω, where Ω is a strictly convex and bounded smooth doma...This paper is concerned with the boundary behavior of strictly convex large solutions to the Monge–Ampère equation det D^2u(x) = b(x)f(u(x)), u >0, x∈Ω, where Ω is a strictly convex and bounded smooth domain in R^N with N ≥ 2, f is normalized regularly varying at infinity with the critical index N and has a lower term, and b∈C~∞(Ω) is positive in Ω, but may be appropriate singular on the boundary.展开更多
设 x:M→R^(n+1)是凸域ΩR^n 上的严格凸函数 x_(n+1)=f(x_1,…,x_n)定义的一个局部强凸超曲面.如果 f 是下面方程的解,则称 M 为α相对极值超曲面:△ρ=(2-nα)/2(‖▽ρ‖~2)/ρ,ρ:=(det((a^2f)/(ax_iax_j)))^(1/(n+2)).2007年,贾...设 x:M→R^(n+1)是凸域ΩR^n 上的严格凸函数 x_(n+1)=f(x_1,…,x_n)定义的一个局部强凸超曲面.如果 f 是下面方程的解,则称 M 为α相对极值超曲面:△ρ=(2-nα)/2(‖▽ρ‖~2)/ρ,ρ:=(det((a^2f)/(ax_iax_j)))^(1/(n+2)).2007年,贾和李证明了存在一个仅依赖于维数 n 的正常数 K(n),如果|α|≥K(n),那么欧氏完备的α相对极值超曲面是椭圆抛物面.本文中我们利用 Calabi 度量给出了这个定理的一个简单证明.展开更多
基金The abdus salam International Centre for Theoretical Physics and the NNSF!( 1 9771 0 0 9) of China
文摘In this paper, we establish global C 1,1/4 estimates for the Dirichlet problem for the Monge Ampère equation, which yield the corresponding existence and regularity results. Our conditions apply to both degenerate and nondegenerate cases.
基金supported by NSF of P.R.China(Grant No.11571295)
文摘This paper is concerned with the boundary behavior of strictly convex large solutions to the Monge–Ampère equation det D^2u(x) = b(x)f(u(x)), u >0, x∈Ω, where Ω is a strictly convex and bounded smooth domain in R^N with N ≥ 2, f is normalized regularly varying at infinity with the critical index N and has a lower term, and b∈C~∞(Ω) is positive in Ω, but may be appropriate singular on the boundary.
文摘设 x:M→R^(n+1)是凸域ΩR^n 上的严格凸函数 x_(n+1)=f(x_1,…,x_n)定义的一个局部强凸超曲面.如果 f 是下面方程的解,则称 M 为α相对极值超曲面:△ρ=(2-nα)/2(‖▽ρ‖~2)/ρ,ρ:=(det((a^2f)/(ax_iax_j)))^(1/(n+2)).2007年,贾和李证明了存在一个仅依赖于维数 n 的正常数 K(n),如果|α|≥K(n),那么欧氏完备的α相对极值超曲面是椭圆抛物面.本文中我们利用 Calabi 度量给出了这个定理的一个简单证明.