The Global Positioning System(GPS)is a GNSS constellation,but GNSS is not always GPS.GPS is one of the GNSS constellations used around the world.The GNSS constellations include GPS(US),QZSS(Japan),Beidou/BDS(China),Ga...The Global Positioning System(GPS)is a GNSS constellation,but GNSS is not always GPS.GPS is one of the GNSS constellations used around the world.The GNSS constellations include GPS(US),QZSS(Japan),Beidou/BDS(China),Galileo(EU),and GLONASS(Russia).In 1999,the European Commission(EC)proposed the European Galileo satellite navigation system for the first time.A four-phase development was proposed,including public and private sector finance.Galileo was intended for both civilian and government use,and is managed and controlled by civil authorities.Galileo is made up of 30 satellites,a number of globally distributed ground stations,and a ground control and monitoring system,all of which are extremely similar to the structure,format,and layout of GPS.In this study,we investigate GPS/GLONASS/Galileo/Beidou/IRNSS/QZSS Navigation Satellite System integration algorithm for long baselines ranging from 1500 km to 3000 km in China,Japan and Mongolia.The positioning performance with GPS/GLONASS/Galileo/BDS/IRNSS/QZSS,GPS-only,Galileo-only,GLONASS-only and BDS-only,etc.is compared in terms of the positioning accuracy.An improvement of positioning accuracy over long baselines can be found with GPS/GLONASS/Galileo/BDS/QZSS/IRNSS compared with that of GPS-only and that of BDS-only.The obtained differences of the two baselines(Topcon Magnet Tools Software(Multi-GNSS)-(CSRS-PPP(GPS/GLONASS),(Trimble-RTX(GPS/GLONASS),(AUSPOS(GPS/GLONASS))Online Processing Software)by using GPS/GLONASS/Galileo/BDS/QZSS/IRNSS signals is between 40 cm and 111.5 cm on three days.展开更多
PPP-RTK which takes full advantages of both Real-Time Kinematic(RTK)and Precise Point Positioning(PPP),is able to provide centimeter-level positioning accuracy with rapid integer Ambiguity Resolution(AR).In recent yea...PPP-RTK which takes full advantages of both Real-Time Kinematic(RTK)and Precise Point Positioning(PPP),is able to provide centimeter-level positioning accuracy with rapid integer Ambiguity Resolution(AR).In recent years,with the development of BeiDou Navigation Satellite System(BDS)and Galileo navigation satellite system(Galileo)as well as the modernization of Global Positioning System(GPS)and GLObal NAvigation Satellite System(GLONASS),more than 140 Global Navigation Satellite System(GNSS)satellites are available.Particularly,the new-generation GNSS satellites are capable of transmitting signals on three or more frequencies.Multi-GNSS and multi-frequency observations become available and can be used to enhance the performance of PPP-RTK.In this contribution,we develop a multi-GNSS and multi-frequency PPP-RTK model,which uses all the available GNSS observations,and comprehensively evaluate its performance in urban environments from the perspectives of positioning accuracy,convergence and fxing percentage.In this method,the precise atmospheric corrections are derived from the multi-frequency and multi-GNSS observations of a regional network,and then disseminated to users to achieve PPP rapid AR.Furthermore,a cascade ambiguity fxing strategy using Extra‐Wide‐Lane(EWL),Wide-Lane(WL)and L1 ambiguities is employed to improve the performance of ambiguity fxing in the urban environments.Vehicle experiments in diferent scenarios such as suburbs,overpasses,and tunnels are conducted to validate the proposed method.In suburbs,an accuracy of within 2 cm in the horizontal direction and 4 cm in the vertical direction,with the fxing percentage of 93.7%can be achieved.Compared to the GPS-only solution,the positioning accuracy is improved by 87.6%.In urban environments where signals are interrupted frequently,a fast ambiguity re-fxing can be achieved within 5 s.Moreover,multifrequency GNSS signals can further improve the positioning performance of PPP-RTK,particularly in the case of small amount of observations.These results demonstrate that the multi-frequency and multi-GNSS PPP-RTK is a promising tool for supporting precise vehicle navigation.展开更多
Stable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance.In general,the positioning accuracy depends strongly on the quality of satellite orb...Stable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance.In general,the positioning accuracy depends strongly on the quality of satellite orbit and clock products,especially for absolute positioning modes,such as Precise Point Positioning(PPP).With the development of real-time services,real-time Precise Orbit Determination(POD)is indispensable and mainly includes two methods:the ultra-rapid orbit prediction and the real-time filtering orbit determination.The real-time filtering method has a great potential to obtain more stable and reliable products than the ultra-rapid orbit prediction method and thus has attracted increasing attention in commercial companies and research institutes.However,several key issues should be resolved,including the refinement of satellite dynamic stochastic models,adaptive filtering for irregular satellite motions,rapid convergence,and real-time Ambiguity Resolution(AR).This paper reviews and summarizes the current research progress in real-time filtering POD with a focus on the aforementioned issues.In addition,the real-time filtering orbit determination software developed by our group is introduced,and some of the latest results are evaluated.The Three-Dimensional(3D)real-time orbit accuracy of GPS and Galileo satellites is better than 5 cm with AR.In terms of the convergence time and accuracy of kinematic PPP AR,the better performance of the filter orbit products is validated compared to the ultra-rapid orbit products.展开更多
Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires...Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires precise products such as orbits,clocks,code,and phase biases.As one of the analysis centers of the International Global Navigation Satellite System(GNSS)Service(IGS),the Wuhan University Multi-GNSS experiment(WUM)Analysis Center(AC)has provided multi-GNSS Observable-Specific Bias(OSB)products with the associated orbit and clock products.In this article,we first introduce the models and generation strategies of WUM rapid phase clock/bias products and orbit-related products(with a latency of less than 16 h).Then,we assess the performance of these products by comparing them with those of other ACs and by testing the PPP-AR positioning precision,using data from Day of the Year(DOY)047 to DOY 078 in 2022.It is found that the peak-to-peak value of phase OSBs is within 2 ns,and their fluctuations are caused by the clock day boundary discontinuities.The associated Global Positioning System(GPS)orbits have the best consistency with European Space Agency(ESA)products,and those of other systems rank in the medium place.GLObal NAvigation Satellite System(GLONASS)clocks show slightly inconsistency with other ACs’due to the antenna thrust power adopted,while the phase clocks of other GNSSs show no distortion compared with legacy clocks.With well-estimated phase products for Precise Orbit Determination(POD),the intrinsic precision is improved by 14%,17%,and 24%for GPS,Galileo navigation satellite system(Galileo),and BeiDou-3 Navigation Satellite System(BDS-3),respectively.The root mean square of PPP-AR using our products in static mode with respect to IGS weekly solutions can reach 0.16 cm,0.16 cm,and 0.44 cm in the east,north,and up directions,respectively.The multi-GNSS wide-lane ambiguity fixing rates are all above 90%,while the narrow-lane fixing rates above 80%.In conclusion,the phase OSB products at WUM have good precision and performance,which will benefit multi-GNSS PPP-AR and POD.展开更多
Because of its high-precision,low-cost and easy-operation,Precise Point Positioning(PPP)becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones.However,the reliabil...Because of its high-precision,low-cost and easy-operation,Precise Point Positioning(PPP)becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones.However,the reliability and availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satellite System(GNSS)signals are blocked frequently.Inertial Navigation System(INS)has been integrated with GNSS to ameliorate such situations in the last decades.Recently,the Visual-Inertial Navigation Systems(VINS)with favorable complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than the INS-only.Nevertheless,the system still must rely on the global positions to eliminate the accumulated errors.In this contribution,we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS(S-VINS),which achieves the bidirectional location transfer and sharing in two separate navigation systems.In our approach,the local positions,produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method.Furthermore,the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments.The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the degradation of positioning accuracy compared with the INS-only mode.We also carried out a vehicle-borne experiment collecting multi-sensor data in a GNSS-challenged environment.For the complex driving environment,the PPP positioning capability is significantly improved with the aiding of S-VINS.The 3D positioning accuracy is improved by 49.0%for Global Positioning System(GPS),40.3%for GPS+GLOANSS(Global Navigation Satellite System),45.6%for GPS+BDS(BeiDou navigation satellite System),and 51.2%for GPS+GLONASS+BDS.On this basis,the solution with the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8-60.6%in 3D position-ing accuracy compared with the multi-GNSS PPP/INS solutions.展开更多
文摘The Global Positioning System(GPS)is a GNSS constellation,but GNSS is not always GPS.GPS is one of the GNSS constellations used around the world.The GNSS constellations include GPS(US),QZSS(Japan),Beidou/BDS(China),Galileo(EU),and GLONASS(Russia).In 1999,the European Commission(EC)proposed the European Galileo satellite navigation system for the first time.A four-phase development was proposed,including public and private sector finance.Galileo was intended for both civilian and government use,and is managed and controlled by civil authorities.Galileo is made up of 30 satellites,a number of globally distributed ground stations,and a ground control and monitoring system,all of which are extremely similar to the structure,format,and layout of GPS.In this study,we investigate GPS/GLONASS/Galileo/Beidou/IRNSS/QZSS Navigation Satellite System integration algorithm for long baselines ranging from 1500 km to 3000 km in China,Japan and Mongolia.The positioning performance with GPS/GLONASS/Galileo/BDS/IRNSS/QZSS,GPS-only,Galileo-only,GLONASS-only and BDS-only,etc.is compared in terms of the positioning accuracy.An improvement of positioning accuracy over long baselines can be found with GPS/GLONASS/Galileo/BDS/QZSS/IRNSS compared with that of GPS-only and that of BDS-only.The obtained differences of the two baselines(Topcon Magnet Tools Software(Multi-GNSS)-(CSRS-PPP(GPS/GLONASS),(Trimble-RTX(GPS/GLONASS),(AUSPOS(GPS/GLONASS))Online Processing Software)by using GPS/GLONASS/Galileo/BDS/QZSS/IRNSS signals is between 40 cm and 111.5 cm on three days.
基金supported by the National Natural Science Foundation of China(Grant 41974027 and Grant 41974029)the Sino-German mobility program(Grant No.M0054)the Technology Innovation Special Project(Major program)of Hubei Province of China(Grant No.2019AAA043).
文摘PPP-RTK which takes full advantages of both Real-Time Kinematic(RTK)and Precise Point Positioning(PPP),is able to provide centimeter-level positioning accuracy with rapid integer Ambiguity Resolution(AR).In recent years,with the development of BeiDou Navigation Satellite System(BDS)and Galileo navigation satellite system(Galileo)as well as the modernization of Global Positioning System(GPS)and GLObal NAvigation Satellite System(GLONASS),more than 140 Global Navigation Satellite System(GNSS)satellites are available.Particularly,the new-generation GNSS satellites are capable of transmitting signals on three or more frequencies.Multi-GNSS and multi-frequency observations become available and can be used to enhance the performance of PPP-RTK.In this contribution,we develop a multi-GNSS and multi-frequency PPP-RTK model,which uses all the available GNSS observations,and comprehensively evaluate its performance in urban environments from the perspectives of positioning accuracy,convergence and fxing percentage.In this method,the precise atmospheric corrections are derived from the multi-frequency and multi-GNSS observations of a regional network,and then disseminated to users to achieve PPP rapid AR.Furthermore,a cascade ambiguity fxing strategy using Extra‐Wide‐Lane(EWL),Wide-Lane(WL)and L1 ambiguities is employed to improve the performance of ambiguity fxing in the urban environments.Vehicle experiments in diferent scenarios such as suburbs,overpasses,and tunnels are conducted to validate the proposed method.In suburbs,an accuracy of within 2 cm in the horizontal direction and 4 cm in the vertical direction,with the fxing percentage of 93.7%can be achieved.Compared to the GPS-only solution,the positioning accuracy is improved by 87.6%.In urban environments where signals are interrupted frequently,a fast ambiguity re-fxing can be achieved within 5 s.Moreover,multifrequency GNSS signals can further improve the positioning performance of PPP-RTK,particularly in the case of small amount of observations.These results demonstrate that the multi-frequency and multi-GNSS PPP-RTK is a promising tool for supporting precise vehicle navigation.
基金National Natural Science Foundation of China(Grand No.41904021).
文摘Stable and reliable high-precision satellite orbit products are the prerequisites for the positioning services with high performance.In general,the positioning accuracy depends strongly on the quality of satellite orbit and clock products,especially for absolute positioning modes,such as Precise Point Positioning(PPP).With the development of real-time services,real-time Precise Orbit Determination(POD)is indispensable and mainly includes two methods:the ultra-rapid orbit prediction and the real-time filtering orbit determination.The real-time filtering method has a great potential to obtain more stable and reliable products than the ultra-rapid orbit prediction method and thus has attracted increasing attention in commercial companies and research institutes.However,several key issues should be resolved,including the refinement of satellite dynamic stochastic models,adaptive filtering for irregular satellite motions,rapid convergence,and real-time Ambiguity Resolution(AR).This paper reviews and summarizes the current research progress in real-time filtering POD with a focus on the aforementioned issues.In addition,the real-time filtering orbit determination software developed by our group is introduced,and some of the latest results are evaluated.The Three-Dimensional(3D)real-time orbit accuracy of GPS and Galileo satellites is better than 5 cm with AR.In terms of the convergence time and accuracy of kinematic PPP AR,the better performance of the filter orbit products is validated compared to the ultra-rapid orbit products.
基金Hubei Luojia Laboratory(No.220100021)National Science Foundation of China(No.42025401)Fundamental Research Funds for the Central Universities(Nos.2042022kf1035,2042022kf1196).
文摘Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires precise products such as orbits,clocks,code,and phase biases.As one of the analysis centers of the International Global Navigation Satellite System(GNSS)Service(IGS),the Wuhan University Multi-GNSS experiment(WUM)Analysis Center(AC)has provided multi-GNSS Observable-Specific Bias(OSB)products with the associated orbit and clock products.In this article,we first introduce the models and generation strategies of WUM rapid phase clock/bias products and orbit-related products(with a latency of less than 16 h).Then,we assess the performance of these products by comparing them with those of other ACs and by testing the PPP-AR positioning precision,using data from Day of the Year(DOY)047 to DOY 078 in 2022.It is found that the peak-to-peak value of phase OSBs is within 2 ns,and their fluctuations are caused by the clock day boundary discontinuities.The associated Global Positioning System(GPS)orbits have the best consistency with European Space Agency(ESA)products,and those of other systems rank in the medium place.GLObal NAvigation Satellite System(GLONASS)clocks show slightly inconsistency with other ACs’due to the antenna thrust power adopted,while the phase clocks of other GNSSs show no distortion compared with legacy clocks.With well-estimated phase products for Precise Orbit Determination(POD),the intrinsic precision is improved by 14%,17%,and 24%for GPS,Galileo navigation satellite system(Galileo),and BeiDou-3 Navigation Satellite System(BDS-3),respectively.The root mean square of PPP-AR using our products in static mode with respect to IGS weekly solutions can reach 0.16 cm,0.16 cm,and 0.44 cm in the east,north,and up directions,respectively.The multi-GNSS wide-lane ambiguity fixing rates are all above 90%,while the narrow-lane fixing rates above 80%.In conclusion,the phase OSB products at WUM have good precision and performance,which will benefit multi-GNSS PPP-AR and POD.
基金the National Natural Science Foundation of China(Grant No.41774030,Grant 41974027)the Hubei Province Natural Science Foundation of China(Grant No.2018CFA081)+1 种基金the National Youth Thousand Talents Program,the frontier project of basic application from Wuhan science and technology bureau(Grant No.2019010701011395)the Sino-German mobility programme(Grant No.M-0054).
文摘Because of its high-precision,low-cost and easy-operation,Precise Point Positioning(PPP)becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones.However,the reliability and availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satellite System(GNSS)signals are blocked frequently.Inertial Navigation System(INS)has been integrated with GNSS to ameliorate such situations in the last decades.Recently,the Visual-Inertial Navigation Systems(VINS)with favorable complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than the INS-only.Nevertheless,the system still must rely on the global positions to eliminate the accumulated errors.In this contribution,we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS(S-VINS),which achieves the bidirectional location transfer and sharing in two separate navigation systems.In our approach,the local positions,produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method.Furthermore,the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments.The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the degradation of positioning accuracy compared with the INS-only mode.We also carried out a vehicle-borne experiment collecting multi-sensor data in a GNSS-challenged environment.For the complex driving environment,the PPP positioning capability is significantly improved with the aiding of S-VINS.The 3D positioning accuracy is improved by 49.0%for Global Positioning System(GPS),40.3%for GPS+GLOANSS(Global Navigation Satellite System),45.6%for GPS+BDS(BeiDou navigation satellite System),and 51.2%for GPS+GLONASS+BDS.On this basis,the solution with the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8-60.6%in 3D position-ing accuracy compared with the multi-GNSS PPP/INS solutions.