The on-ramp merging in multi-lane highway scenarios presents challenges due to the complexity of coordinating vehicles’merging and lane-changing behaviors,while ensuring safety and optimizing traffic flow.However,the...The on-ramp merging in multi-lane highway scenarios presents challenges due to the complexity of coordinating vehicles’merging and lane-changing behaviors,while ensuring safety and optimizing traffic flow.However,there are few studies that have addressed the merging problem of ramp vehicles and the cooperative lane-change problem of mainline vehicles within a unified framework and proposed corresponding optimization strategies.To tackle this issue,this study adopts a cyber-physical integration perspective and proposes a graph-based solution approach.First,the information of vehicle groups in the physical plane is mapped to the cyber plane,and a dynamic conflict graph is introduced in the cyber space to describe the conflict relationships among vehicle groups.Subsequently,graph decomposition and search strategies are employed to obtain the optimal solution,including the set of mainline vehicles changing lanes,passing sequences for each route,and corresponding trajectories.Finally,the proposed dynamic conflict graph-based algorithm is validated through simulations in continuous traffic with various densities,and its performance is compared with the default algorithm in SUMO.The results demonstrate the effectiveness of the proposed approach in improving vehicle safety and traffic efficiency,particularly in high traffic density scenarios,providing valuable insights for future research in multi-lane merging strategies.展开更多
Many bridge design specifications consider multi-lane factors(MLFs)a critical component of the traffic load model.Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over m...Many bridge design specifications consider multi-lane factors(MLFs)a critical component of the traffic load model.Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over multiple lanes.However,these disparities are not considered in current specifications.To address this drawback,a multi-coefficient MLF model was developed based on an improved probabilistic statistical approach that considers the presence of multiple trucks.The proposed MLF model and approach were calibrated and demonstrated through an example site.The model sensitivity analysis demonstrated the significant influence of lane disparity of truck traffic volume and truck weight distribution on the MLF.Using the proposed approach,the experimental site study yielded MLFs comparable with those directly calculated using traffic load effects.The exclusion of overloaded trucks caused the proposed approach,existing design specifications,and conventional approach of ignoring lane load disparity to generate comparable MLFs,while the MLFs based on the proposed approach were the most comprehensive.The inclusion of overloaded trucks caused the conventional approach and design specifications to overestimate the MLFs significantly.Finally,the benefits of the research results to bridge practitioners were discussed.展开更多
Existing studies on modern roundabouts performance are mostly based on data fron: singe lane roundabouts that are not heavily congested. For planners and designers interested in building multilane roundabouts for int...Existing studies on modern roundabouts performance are mostly based on data fron: singe lane roundabouts that are not heavily congested. For planners and designers interested in building multilane roundabouts for intersections with potential growth i~ future traffic, there has been a lack of existing studies with field data that provide reference values in terms of capacity and delay measurements. With the intent of providing such reference values, a case study was conducted by using the East DowlinC Road Roundabouts in Anchorage, Alaska, which are currently operating with extensive queues during the evening peak hours. This research used multiple video camcorders t( capture vehicle turning movements at the roundabouts as well as the progressior~ of vehicle queues at the roundabout entrance approaches. With these video records, the number of vehicles in the queues can be accurately counted in any single minute during the peak hours. This study shows that unbalanced entrance flow patterns (i.e., ~ne entrance has significant higher flow than others) can intensify the queue and delay fo., the overall roundabouts. Then various software packages including RODEL, SIDRA and VISSIM were used to estimate several performance measurements, such as capacity. queue length, and delay, compared with the collected field data. With the comparison, it is found that all the three software packages overestimate multi-lane roundabout ca pacity before calibration. With default parameters, SIDRA and VISSIM tend to underes timate delays and queue lengths for the multi-lane roundabouts under congestion, while RODEL results in higher delay and queue length estimations at most of the entrance approaches.展开更多
基金supported by the National Key R&D Program of China(2022YFB2503200)the National Natural Science Foundation of China,Science Fund for Creative Research Groups(52221005).
文摘The on-ramp merging in multi-lane highway scenarios presents challenges due to the complexity of coordinating vehicles’merging and lane-changing behaviors,while ensuring safety and optimizing traffic flow.However,there are few studies that have addressed the merging problem of ramp vehicles and the cooperative lane-change problem of mainline vehicles within a unified framework and proposed corresponding optimization strategies.To tackle this issue,this study adopts a cyber-physical integration perspective and proposes a graph-based solution approach.First,the information of vehicle groups in the physical plane is mapped to the cyber plane,and a dynamic conflict graph is introduced in the cyber space to describe the conflict relationships among vehicle groups.Subsequently,graph decomposition and search strategies are employed to obtain the optimal solution,including the set of mainline vehicles changing lanes,passing sequences for each route,and corresponding trajectories.Finally,the proposed dynamic conflict graph-based algorithm is validated through simulations in continuous traffic with various densities,and its performance is compared with the default algorithm in SUMO.The results demonstrate the effectiveness of the proposed approach in improving vehicle safety and traffic efficiency,particularly in high traffic density scenarios,providing valuable insights for future research in multi-lane merging strategies.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51808148)Natural Science Foundation of Guangdong Province,China(No.2019A1515010701)Guangzhou Municipal Science and Technology Project(No.201904010188).
文摘Many bridge design specifications consider multi-lane factors(MLFs)a critical component of the traffic load model.Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over multiple lanes.However,these disparities are not considered in current specifications.To address this drawback,a multi-coefficient MLF model was developed based on an improved probabilistic statistical approach that considers the presence of multiple trucks.The proposed MLF model and approach were calibrated and demonstrated through an example site.The model sensitivity analysis demonstrated the significant influence of lane disparity of truck traffic volume and truck weight distribution on the MLF.Using the proposed approach,the experimental site study yielded MLFs comparable with those directly calculated using traffic load effects.The exclusion of overloaded trucks caused the proposed approach,existing design specifications,and conventional approach of ignoring lane load disparity to generate comparable MLFs,while the MLFs based on the proposed approach were the most comprehensive.The inclusion of overloaded trucks caused the conventional approach and design specifications to overestimate the MLFs significantly.Finally,the benefits of the research results to bridge practitioners were discussed.
基金sponsored by Alaska University Transportation Center(AUTC,No.RR08.08)Alaska Department of Transportation(AK DOT)
文摘Existing studies on modern roundabouts performance are mostly based on data fron: singe lane roundabouts that are not heavily congested. For planners and designers interested in building multilane roundabouts for intersections with potential growth i~ future traffic, there has been a lack of existing studies with field data that provide reference values in terms of capacity and delay measurements. With the intent of providing such reference values, a case study was conducted by using the East DowlinC Road Roundabouts in Anchorage, Alaska, which are currently operating with extensive queues during the evening peak hours. This research used multiple video camcorders t( capture vehicle turning movements at the roundabouts as well as the progressior~ of vehicle queues at the roundabout entrance approaches. With these video records, the number of vehicles in the queues can be accurately counted in any single minute during the peak hours. This study shows that unbalanced entrance flow patterns (i.e., ~ne entrance has significant higher flow than others) can intensify the queue and delay fo., the overall roundabouts. Then various software packages including RODEL, SIDRA and VISSIM were used to estimate several performance measurements, such as capacity. queue length, and delay, compared with the collected field data. With the comparison, it is found that all the three software packages overestimate multi-lane roundabout ca pacity before calibration. With default parameters, SIDRA and VISSIM tend to underes timate delays and queue lengths for the multi-lane roundabouts under congestion, while RODEL results in higher delay and queue length estimations at most of the entrance approaches.