期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Novel Multimodal Biometric Feature Extraction for Precise Human Identification
1
作者 J.Vasavi M.S.Abirami 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1349-1363,共15页
In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris r... In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively. 展开更多
关键词 multimodalbiometric feature extraction ranking-baseddeepconvolution neural network noisy sensor data palm prints lip biometric iris recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部