Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presen...Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presence or absence). It has been shown that such a binary trait also can be analyzed with the simple linear regression, subject to virtually no loss in power compared to the generalized linear model analysis. Binary trait is a special case of a multiple categorical trait (e.g., low, medium or high). We propose a mechanism to decompose a multiple categorical trait into an array of correlated binary variables. The categorical trait turned multiple binary traits are analyzed with a multivariate linear regression method. Turning the problem of categorical trait mapping into that of multivariate mapping allows the exploration of pleiotropic effects of QTL for different categories. Efficiency of the method is verified through a series of simulation experiments.展开更多
In this paper we aim to analyse temporal variation of CD4 cell counts for HIV-infected individuals under antiretroviral therapy by using statistical methods. This is achieved by resorting to recursive binary regressio...In this paper we aim to analyse temporal variation of CD4 cell counts for HIV-infected individuals under antiretroviral therapy by using statistical methods. This is achieved by resorting to recursive binary regression tree approach [1]?[2]. This approach has made it possible to highlight the existence of several segments of the population of interest described by the interactions between the predictive covariates of the response to the treatment regimen.展开更多
为解决传统多元线性回归(Multivariate linear regression,MLR)模型在煤炭发热量预测方面精度不足和适用性有限的问题,提出了一种基于改进自适应增强算法(Adaptive boosting,Adaboost)的煤发热量的预测模型。将随机森林(Random forest,...为解决传统多元线性回归(Multivariate linear regression,MLR)模型在煤炭发热量预测方面精度不足和适用性有限的问题,提出了一种基于改进自适应增强算法(Adaptive boosting,Adaboost)的煤发热量的预测模型。将随机森林(Random forest,RF)作为Adaboost的基学习器,以提高模型在工业煤质分析中的发热量预测精度和泛化能力。研究基于某电厂1万组入炉煤的工业分析数据,选取水分、挥发分、灰分和固定碳作为模型输入,建立煤炭低位发热量的预测模型。通过与传统的多元线性回归方程及其他非线性模型比较,模型展现出更高的预测精度和更好的泛化能力。大样本测试的实验结果表明,本模型的平均绝对百分比误差为0.5417%,均方根误差为0.1304 MJ/kg,拟合度(R^(2))达到0.9799,其在煤炭发热量预测方面优于其他模型。此外,200组真实的混煤工业分析数据的模拟验证,进一步确认了本模型较优的泛化性能。展开更多
The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (...The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (UER) and multivariate linear regression (MLR) were used in this study. Loading equipment parameters such as bucket capacity, machine weight, engine power, boom length, digging depth, and dumping height were considered as variables. The results obtained by models and mean absolute error rate indicate that these models can be applied as the useful tool in determination of overhaul and maintenance cost of loading equipment. The results of this study can be used by the decision-makers for the specific surface mining operations.展开更多
Side-channel attacks(SCAs)play an important role in the security evaluation of cryptographic devices.As a form of SCAs,profiled differential power analysis(DPA)is among the most powerful and efficient by taking advant...Side-channel attacks(SCAs)play an important role in the security evaluation of cryptographic devices.As a form of SCAs,profiled differential power analysis(DPA)is among the most powerful and efficient by taking advantage of a profiling phase that learns features from a controlled device.Linear regression(LR)based profiling,a special profiling method proposed by Schindler et al.,could be extended to generic-emulating DPA(differential power analysis)by on-the-fly profiling.The formal extension was proposed by Whitnall et al.named SLR-based method.Later,to improve SLR-based method,Wang et al.introduced a method based on ridge regression.However,the constant format of L-2 penalty still limits the performance of profiling.In this paper,we generalize the ridge-based method and propose a new strategy of using variable regularization.We then analyze from a theoretical point of view why we should not use constant penalty format for all cases.Roughly speaking,our work reveals the underlying mechanism of how different formats affect the profiling process in the context of side channel.Therefore,by selecting a proper regularization,we could push the limits of LR-based profiling.Finally,we conduct simulation-based and practical experiments to confirm our analysis.Specifically,the results of our practical experiments show that the proper formats of regularization are different among real devices.展开更多
Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of...Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.展开更多
Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding ...Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding Program of the Federal University of Uberlandia, in their adaptive capacity and seed yield stability at 3 locations and 2 growing seasons. For the adaptability and stability analysis the Toler and Centroid methods were used;5 genotypic groups were identified in the first whereas 4 groups were identified in the latter. By the Toler method group A was composed by 4 genotypes, UFU-001, UFU-003, UFU-0010, and UFU-001. They showed a convex pattern of adaptability and stability. In contrast, the genotypes UFU-008 and UFU-0013 were classified in Group E with a concave pattern of adaptability and stability. Regarding results from the Centroid method, the Genotype UFU-002, with higher seed yield than average, was the only genotype in Ideotype VI with moderate adaptability to favorable environments. In contrast, 10 genotypes were included in the Ideotype V, of medium general adaptability. The genotypes UFU-001, UFU-002, UFU-006, UFU-0010, and UFU-0011 were recommended for use in the Brazilian Cerrado growing region. These genotypes had high seed yield potential in high quality environments.展开更多
基金Item supported by national natural sciencefoundation( No.30471236)
文摘Simple linear regression analysis has been used to map QTL for quantitative traits. Many traits of biological interest and/or economical importance in various species show binary phenotypic distributions (e.g., presence or absence). It has been shown that such a binary trait also can be analyzed with the simple linear regression, subject to virtually no loss in power compared to the generalized linear model analysis. Binary trait is a special case of a multiple categorical trait (e.g., low, medium or high). We propose a mechanism to decompose a multiple categorical trait into an array of correlated binary variables. The categorical trait turned multiple binary traits are analyzed with a multivariate linear regression method. Turning the problem of categorical trait mapping into that of multivariate mapping allows the exploration of pleiotropic effects of QTL for different categories. Efficiency of the method is verified through a series of simulation experiments.
文摘In this paper we aim to analyse temporal variation of CD4 cell counts for HIV-infected individuals under antiretroviral therapy by using statistical methods. This is achieved by resorting to recursive binary regression tree approach [1]?[2]. This approach has made it possible to highlight the existence of several segments of the population of interest described by the interactions between the predictive covariates of the response to the treatment regimen.
文摘The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (UER) and multivariate linear regression (MLR) were used in this study. Loading equipment parameters such as bucket capacity, machine weight, engine power, boom length, digging depth, and dumping height were considered as variables. The results obtained by models and mean absolute error rate indicate that these models can be applied as the useful tool in determination of overhaul and maintenance cost of loading equipment. The results of this study can be used by the decision-makers for the specific surface mining operations.
基金supported by the State Grid Science and Technology Project of China under Grant No.546816190003.
文摘Side-channel attacks(SCAs)play an important role in the security evaluation of cryptographic devices.As a form of SCAs,profiled differential power analysis(DPA)is among the most powerful and efficient by taking advantage of a profiling phase that learns features from a controlled device.Linear regression(LR)based profiling,a special profiling method proposed by Schindler et al.,could be extended to generic-emulating DPA(differential power analysis)by on-the-fly profiling.The formal extension was proposed by Whitnall et al.named SLR-based method.Later,to improve SLR-based method,Wang et al.introduced a method based on ridge regression.However,the constant format of L-2 penalty still limits the performance of profiling.In this paper,we generalize the ridge-based method and propose a new strategy of using variable regularization.We then analyze from a theoretical point of view why we should not use constant penalty format for all cases.Roughly speaking,our work reveals the underlying mechanism of how different formats affect the profiling process in the context of side channel.Therefore,by selecting a proper regularization,we could push the limits of LR-based profiling.Finally,we conduct simulation-based and practical experiments to confirm our analysis.Specifically,the results of our practical experiments show that the proper formats of regularization are different among real devices.
文摘Equal Salt Deposit Density (ESDD) is a main factor to classify contamination severity and draw pollution distribution map. The precise ESDD forecasting plays an important role in the safety, economy and reliability of power system. To cope with the problems existing in the ESDD predicting by multivariate linear regression (MLR), back propagation (BP) neural network and least squares support vector machines (LSSVM), a nonlinear combination forecasting model based on wavelet neural network (WNN) for ESDD is proposed. The model is a WNN with three layers, whose input layer has three neurons and output layer has one neuron, namely, regarding the ESDD forecasting results of MLR, BP and LSSVM as the inputs of the model and the observed value as the output. In the interest of better reflection of the influence of each single forecasting model on ESDD and increase of the accuracy of ESDD prediction, Morlet wavelet is used to con-struct WNN, error backpropagation algorithm is adopted to train the network and genetic algorithm is used to determine the initials of the parameters. Simulation results show that the accuracy of the proposed combina-tion ESDD forecasting model is higher than that of any single model and that of traditional linear combina-tion forecasting (LCF) model. The model provides a new feasible way to increase the accuracy of pollution distribution map of power network.
文摘Soybean (Glycine max L. Merr.) adaptation to new environments has been hard to predict based on maturity group. The aim of this study was to evaluate the performance of 14 soybean genotypes, from the Soybean Breeding Program of the Federal University of Uberlandia, in their adaptive capacity and seed yield stability at 3 locations and 2 growing seasons. For the adaptability and stability analysis the Toler and Centroid methods were used;5 genotypic groups were identified in the first whereas 4 groups were identified in the latter. By the Toler method group A was composed by 4 genotypes, UFU-001, UFU-003, UFU-0010, and UFU-001. They showed a convex pattern of adaptability and stability. In contrast, the genotypes UFU-008 and UFU-0013 were classified in Group E with a concave pattern of adaptability and stability. Regarding results from the Centroid method, the Genotype UFU-002, with higher seed yield than average, was the only genotype in Ideotype VI with moderate adaptability to favorable environments. In contrast, 10 genotypes were included in the Ideotype V, of medium general adaptability. The genotypes UFU-001, UFU-002, UFU-006, UFU-0010, and UFU-0011 were recommended for use in the Brazilian Cerrado growing region. These genotypes had high seed yield potential in high quality environments.