Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by us...Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.展开更多
Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread e...Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.展开更多
The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based o...The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.展开更多
This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model need...This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model needs less capacity. Practice proved that the method issimple, calculation is easy, and results are exact.展开更多
Virtual dynamic optimization design can avoid the repeated process from de-sign to trial-manufacture and test.The designer can analyze and optimize the productstructures in virtual visualization environment.The design...Virtual dynamic optimization design can avoid the repeated process from de-sign to trial-manufacture and test.The designer can analyze and optimize the productstructures in virtual visualization environment.The design cycle is shortened and the costis reduced.The paper analyzed the peculiarity of virtual optimization design,and put for-wards the thought and flow to implement virtual optimization design.The example to opti-mize the internal grinder was studied via establishing precise finite element model,modi-fying the layout of Stiffened Plates and designing parameters of the worktable,and usingthe technology of modal frequency revision and the technology of multiple tuned damper.The result of optimization design compared the new grinder with the original grinder showsthat the entire machine's first orders natural frequency is enhanced by 17%,and the re-sponse displacement of the grinding-head has dropped by 28% under the first order natu-ral frequency and by 41% under second order natural frequency.Finally,the dynamic per-formance of the internal grinder was optimized.展开更多
Based on the kinematics of the multi-body system , a general model for the positioning errors of NC machine tools by means of the lower numbered body array and the geometric constraint is presented. The parameters ide...Based on the kinematics of the multi-body system , a general model for the positioning errors of NC machine tools by means of the lower numbered body array and the geometric constraint is presented. The parameters identification of geometric errors by an improved 22-line method is discussed. Moreover , an intelligent error compensation controller has been developed. All these are verified by a series of experiments on XH714 machining center. The results show that the prosition- ing errors with compensation have been reduced to ±7 μm from 50 μm.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables gro...The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables grouping technique is improved.Temperature variables are sorted according to their relativities with the thermal errors.The representative temperature variables are determined by analyzing the variable correlation in sort order and removing the other variables in the same group.Considering the diverse effect of importing the different variables on thermal error model,the method of variable combination optimization is improved.Regression models made up of different combination of representative temperature variables are evaluated by the index of both the determined coefficient and the average residual squares to select the combination of the temperature variables.For the machine tools with complicated structures which need more initial temperature measuring points the improvement is demanded.The improved approach is applied to a precision horizontal machining center to identify the key thermal points.Experimental results show that the proposed approach is capable of avoiding the high correlation among the different groups' variables,effectively reducing the number of the key thermal points without depressing the prediction accuracy of the thermal error model for machine tools.展开更多
Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the g...Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the geometric accuracy of NC machine tool. However, these methods have deficiencies in detection efficiency and accuracy as well as in versatility. In the paper, a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the geometric accuracy of NC machine tool. The machine tool is controlled to move in the preset path in a 3D space or 2D plane, and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations. The original algorithm for multi-station and time-sharing measurement is improved. The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values, and the initial position of each base point can be determined. The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker, and the position of each base point is further determined by solving the equation with least squares method, then the space coordinates of each measuring point can be calibrated. The singular matrix does not occur in calculation with the improved algorithm, which overcomes the limitations of the original algorithm, that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations. Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement, and can meet the quick and accurate detecting requirements for different types of NC machine tool.展开更多
The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also...The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.展开更多
The key techniques of modular design of heavy duty NC mathine tools are described. Amodule definition modelfor modular design and manufacturing of heavy duty NC machine tools isbulit and the essential composition of t...The key techniques of modular design of heavy duty NC mathine tools are described. Amodule definition modelfor modular design and manufacturing of heavy duty NC machine tools isbulit and the essential composition of the module definition model (MDM) is discussed in detail. Itis composed of two models: the part definition model (PDM) and the module assembly model(MAM). The PDM and MAM are built and their structures are given. Using object-oriented know-ledge representation and based on these models, an intelligent support system of modular design forheavy duty NC machine tools is developed and implemented This system has been applied to thepractical use of Wuhan Heavy Duty Machine Tool Works展开更多
Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However,up until now,functional combination is still the main method for product s...Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However,up until now,functional combination is still the main method for product system de-sign in China. Therefore,in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today,the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated,it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product de-sign. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.展开更多
An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to...An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to identify geometric error parameters for three-coordinate equipment such as NC machining center and CMM.展开更多
The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine t...The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools.展开更多
Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. Th...Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. The minimum negative log-likelihood function was used as the objective function to optimize instead of using iterative method to solve complex system of equations,and the problem of parameter estimation of improved NHPP model was solved by immune clone algorithm. And the interval estimation of reliability indices was given by using fisher information matrix method and delta method. An example of failure truncated data from multiple numerical control( NC) machine tools was taken to prove the method. and the results show that the algorithm has a higher convergence rate and computational accuracy, which demonstrates the feasibility of the method.展开更多
In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center com...In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center comprise of the alignment error of rotary axes and the angular error due to various factors, e.g. the inclination of rotary axes. From sensitive viewpoints, each motion error is possible to have a particular sensitive direction in which deviation of DBB error trace arises from only some specific error sources. The model of the DBB error trace is established according to the spatial geometry theory. Accordingly, the sensitive direction of each motion error source is made clear through numerical simulation, which is used as the reference patterns for rotational error estimation. The estimation method is proposed to easily estimate the motion error sources of rotary axes in quantitative manner. To verify the proposed DBB method for rotational error estimation, the experimental tests are carried out on a 5-axis machining center M-400 (MORISEIKI). The effect of the mismatch of the DBB is also studied to guarantee the estimation accuracy. From the experimental data, it is noted that the proposed estimation method for 5-axis machining center is feasible and effective.展开更多
文摘Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%.
基金Supported by Research on Reliability Assessment and Test Methods of Heavy Machine Tools,China(State Key Science&Technology Project High-grade NC Machine Tools and Basic Manufacturing Equipment,Grant No.2014ZX04014-011)Reliability Modeling of Machining Centers Considering the Cutting Loads,China(Science&Technology Development Plan for Jilin Province,Grant No.3D513S292414)Graduate Innovation Fund of Jilin University,China(Grant No.2014053)
文摘Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy.
基金This project is supported by National Advanced ResearchFoundation (No.PD521910) and National Natural ScienceFoundation of Ch
文摘The methods of identifying geometric error parameters for NC machine tools are introduced. According to analyzing and comparing the different methods, a new method-displacement method with 9 lines is developed based on the theories of the movement errors of multibody system (MBS). A lot of experiments are also made to obtain 21 terms geometric error parameters by using the error identification software based on the new method.
文摘This paper applied the gray system theory to error data processing of NCmachine tools according to the characteristic. It presented the gray metabolism model of error dataprocessing. The test method for the model needs less capacity. Practice proved that the method issimple, calculation is easy, and results are exact.
基金Supported by the National Natural Science Foundation of China(50375026)
文摘Virtual dynamic optimization design can avoid the repeated process from de-sign to trial-manufacture and test.The designer can analyze and optimize the productstructures in virtual visualization environment.The design cycle is shortened and the costis reduced.The paper analyzed the peculiarity of virtual optimization design,and put for-wards the thought and flow to implement virtual optimization design.The example to opti-mize the internal grinder was studied via establishing precise finite element model,modi-fying the layout of Stiffened Plates and designing parameters of the worktable,and usingthe technology of modal frequency revision and the technology of multiple tuned damper.The result of optimization design compared the new grinder with the original grinder showsthat the entire machine's first orders natural frequency is enhanced by 17%,and the re-sponse displacement of the grinding-head has dropped by 28% under the first order natu-ral frequency and by 41% under second order natural frequency.Finally,the dynamic per-formance of the internal grinder was optimized.
文摘Based on the kinematics of the multi-body system , a general model for the positioning errors of NC machine tools by means of the lower numbered body array and the geometric constraint is presented. The parameters identification of geometric errors by an improved 22-line method is discussed. Moreover , an intelligent error compensation controller has been developed. All these are verified by a series of experiments on XH714 machining center. The results show that the prosition- ing errors with compensation have been reduced to ±7 μm from 50 μm.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
基金Sponsored by the Special Fund for Scientific and Technological Achievement Transformation of Jiangsu Provincethe Basic Scientific Research Professional Expense of NUAA for Special Project
文摘The grouping and optimization approach to identify the key thermal points on machine tools is studied.To solve the difficulty in grouping because of the high correlated variables from distinct groups,the variables grouping technique is improved.Temperature variables are sorted according to their relativities with the thermal errors.The representative temperature variables are determined by analyzing the variable correlation in sort order and removing the other variables in the same group.Considering the diverse effect of importing the different variables on thermal error model,the method of variable combination optimization is improved.Regression models made up of different combination of representative temperature variables are evaluated by the index of both the determined coefficient and the average residual squares to select the combination of the temperature variables.For the machine tools with complicated structures which need more initial temperature measuring points the improvement is demanded.The improved approach is applied to a precision horizontal machining center to identify the key thermal points.Experimental results show that the proposed approach is capable of avoiding the high correlation among the different groups' variables,effectively reducing the number of the key thermal points without depressing the prediction accuracy of the thermal error model for machine tools.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No. 2008AA042404)
文摘Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the geometric accuracy of NC machine tool. However, these methods have deficiencies in detection efficiency and accuracy as well as in versatility. In the paper, a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the geometric accuracy of NC machine tool. The machine tool is controlled to move in the preset path in a 3D space or 2D plane, and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations. The original algorithm for multi-station and time-sharing measurement is improved. The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values, and the initial position of each base point can be determined. The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker, and the position of each base point is further determined by solving the equation with least squares method, then the space coordinates of each measuring point can be calibrated. The singular matrix does not occur in calculation with the improved algorithm, which overcomes the limitations of the original algorithm, that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations. Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement, and can meet the quick and accurate detecting requirements for different types of NC machine tool.
基金Project supported by National Natural Science Foundation of China(No. 50675199)the Science and Technology Project of Zhejiang Province (No. 2006C11067), China
文摘The interaction between the heat source location, its intensity, thermal expansion coefficient, the machine system configuration and the running environment creates complex thermal behavior of a machine tool, and also makes thermal error prediction difficult. To address this issue, a novel prediction method for machine tool thermal error based on Bayesian networks (BNs) was presented. The method described causal relationships of factors inducing thermal deformation by graph theory and estimated the thermal error by Bayesian statistical techniques. Due to the effective combination of domain knowledge and sampled data, the BN method could adapt to the change of running state of machine, and obtain satisfactory prediction accuracy. Ex- periments on spindle thermal deformation were conducted to evaluate the modeling performance. Experimental results indicate that the BN method performs far better than the least squares (LS) analysis in terms of modeling estimation accuracy.
文摘The key techniques of modular design of heavy duty NC mathine tools are described. Amodule definition modelfor modular design and manufacturing of heavy duty NC machine tools isbulit and the essential composition of the module definition model (MDM) is discussed in detail. Itis composed of two models: the part definition model (PDM) and the module assembly model(MAM). The PDM and MAM are built and their structures are given. Using object-oriented know-ledge representation and based on these models, an intelligent support system of modular design forheavy duty NC machine tools is developed and implemented This system has been applied to thepractical use of Wuhan Heavy Duty Machine Tool Works
文摘Product system design is a mature concept in western developed countries. It has been applied in war industry during the last century. However,up until now,functional combination is still the main method for product system de-sign in China. Therefore,in terms of a concept of product generation and product interaction we are in a weak position compared with the requirements of global markets. Today,the idea of serial product design has attracted much attention in the design field and the definition of product generation as well as its parameters has already become the standard in serial product designs. Although the design of a large-scale NC machine tool is complicated,it can be further optimized by the precise exercise of object design by placing the concept of platform establishment firmly into serial product de-sign. The essence of a serial product design has been demonstrated by the design process of a large-scale NC machine tool.
文摘An improved 22--line method of parameters identification for geometric errors of NC machine tools is discussed. All models are verified by a series of experiments on XH714 machining center. This method is available to identify geometric error parameters for three-coordinate equipment such as NC machining center and CMM.
基金supported by National Key Technology R&D Program of China (Grant No. 2006BAF01B09)the Research Fund for Doctoral Program of Higher Education of China (Grant No. 200800060010)
文摘The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools.
基金National CNC Special Project,China(No.2010ZX04001-032)the Youth Science and Technology Foundation of Gansu Province,China(No.145RJYA307)
文摘Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. The minimum negative log-likelihood function was used as the objective function to optimize instead of using iterative method to solve complex system of equations,and the problem of parameter estimation of improved NHPP model was solved by immune clone algorithm. And the interval estimation of reliability indices was given by using fisher information matrix method and delta method. An example of failure truncated data from multiple numerical control( NC) machine tools was taken to prove the method. and the results show that the algorithm has a higher convergence rate and computational accuracy, which demonstrates the feasibility of the method.
文摘In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center comprise of the alignment error of rotary axes and the angular error due to various factors, e.g. the inclination of rotary axes. From sensitive viewpoints, each motion error is possible to have a particular sensitive direction in which deviation of DBB error trace arises from only some specific error sources. The model of the DBB error trace is established according to the spatial geometry theory. Accordingly, the sensitive direction of each motion error source is made clear through numerical simulation, which is used as the reference patterns for rotational error estimation. The estimation method is proposed to easily estimate the motion error sources of rotary axes in quantitative manner. To verify the proposed DBB method for rotational error estimation, the experimental tests are carried out on a 5-axis machining center M-400 (MORISEIKI). The effect of the mismatch of the DBB is also studied to guarantee the estimation accuracy. From the experimental data, it is noted that the proposed estimation method for 5-axis machining center is feasible and effective.