Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed trans...Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.展开更多
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholar of China under Grant No 50025207, and the National Basic Research Programme of China under Grant No 2004CB719800.
文摘Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.