期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wolbachia enhances expression of NICYP4CE1 in Nilaparvata lugens in response to imidacloprid stress 被引量:5
1
作者 Tingwei Cai Yunhua Zhang +4 位作者 Yu Liu Xiaoqian Deng Shun He Jianhong Li Hu Wan 《Insect Science》 SCIE CAS CSCD 2021年第2期355-362,共8页
The brown planthopper,Nilaparvata lugens,is one of the main insect pests of rice.The N.lugens gene NICYP4CE1 encodes cytochrome P450 monooxygenase(P450),which is a key enzyme in the metabolism of the insecticide imida... The brown planthopper,Nilaparvata lugens,is one of the main insect pests of rice.The N.lugens gene NICYP4CE1 encodes cytochrome P450 monooxygenase(P450),which is a key enzyme in the metabolism of the insecticide imidacloprid.Previous research has suggested that the expression of NICYP4CEI is induced by imidacloprid stress,but the effect of bacterial symbionts on its expression has not been determined.The results of this study show that exposure to subtoxic imidacloprid changed the structure of the bacterial symbiont community in N.lugens.Specifically,the total bacterial content increased but the bacterial species diversity significantly decreased.Wolbachia accounted for the largest proportion of bacteria in N.lugens;its abundance significantly increased after subtoxic imidacloprid exposure.The transcript level of NICYP4CEI was significantly increased by imidacloprid,but this effect was significantly weakened after Wolbachia was cleared with tetracycline.This result suggests that Wolbachia enhances the expression of N1CYP4CE1 to promote the detoxification metabolic response to imidacloprid stress.Understanding the effect of bacterial symbionts on gene expression in the host provides a new perspective on interactions between insecticides and their target insect pests,and highlights that subtoxic imidacloprid exposure may raise the risk of insecticide resistance by altering the structure of bacterial symbiont communities. 展开更多
关键词 host-microbe interaction IMIDACLOPRID nicyp4ce1 P450 WOLBACHIA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部