利用2012年6月12日—8月31日华中区域中尺度业务数值预报模式(WRF)一日两次的预报结果,采用NMC方法对背景误差协方差(B)进行了统计,得到了基于华中区域业务模式框架、分辨率和区域地理特征的夏季背景误差协方差矩阵的回归系数、特征向...利用2012年6月12日—8月31日华中区域中尺度业务数值预报模式(WRF)一日两次的预报结果,采用NMC方法对背景误差协方差(B)进行了统计,得到了基于华中区域业务模式框架、分辨率和区域地理特征的夏季背景误差协方差矩阵的回归系数、特征向量、特征值以及特征长度尺度,并对模式三重嵌套各区域B的统计结构特征进行了对比,结果表明不同区域B的统计结构特征差异明显,表明B与模式区域地理特征和分辨率等关系密切。为探讨不同B对模式预报的影响,采用WRF模式自带的通用B矩阵(CV3-B)及本文统计得到的本地化B矩阵两种方案对2013年6—8月进行了批量试验和统计检验,结果表明:采用本地化B后,24 h小雨、中雨、大雨和48 h中雨、大雨、暴雨降水预报TS评分皆有所提高。850 h Pa风、温度及2 m温度等要素场预报的均方根误差减小,但500 h Pa高度场均方根误差略有加大。暴雨个例的分析表明:不同B方案,对初值影响非常显著,本地化B方案分析的初值场更趋合理,因而改进了降水预报。展开更多
文摘利用2012年6月12日—8月31日华中区域中尺度业务数值预报模式(WRF)一日两次的预报结果,采用NMC方法对背景误差协方差(B)进行了统计,得到了基于华中区域业务模式框架、分辨率和区域地理特征的夏季背景误差协方差矩阵的回归系数、特征向量、特征值以及特征长度尺度,并对模式三重嵌套各区域B的统计结构特征进行了对比,结果表明不同区域B的统计结构特征差异明显,表明B与模式区域地理特征和分辨率等关系密切。为探讨不同B对模式预报的影响,采用WRF模式自带的通用B矩阵(CV3-B)及本文统计得到的本地化B矩阵两种方案对2013年6—8月进行了批量试验和统计检验,结果表明:采用本地化B后,24 h小雨、中雨、大雨和48 h中雨、大雨、暴雨降水预报TS评分皆有所提高。850 h Pa风、温度及2 m温度等要素场预报的均方根误差减小,但500 h Pa高度场均方根误差略有加大。暴雨个例的分析表明:不同B方案,对初值影响非常显著,本地化B方案分析的初值场更趋合理,因而改进了降水预报。