期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Pretreating and normalizing metabolomics data for statistical analysis 被引量:1
1
作者 Jun Sun Yinglin Xia 《Genes & Diseases》 SCIE CSCD 2024年第3期188-205,共18页
Metabolomics as a research field and a set of techniques is to study the entire small molecules in biological samples.Metabolomics is emerging as a powerful tool generally for pre-cision medicine.Particularly,integrat... Metabolomics as a research field and a set of techniques is to study the entire small molecules in biological samples.Metabolomics is emerging as a powerful tool generally for pre-cision medicine.Particularly,integration of microbiome and metabolome has revealed the mechanism and functionality of microbiome in human health and disease.However,metabo-lomics data are very complicated.Preprocessing/pretreating and normalizing procedures on metabolomics data are usually required before statistical analysis.In this review article,we comprehensively review various methods that are used to preprocess and pretreat metabolo-mics data,including MS-based data and NMR-based data preprocessing,dealing with zero and/or missing values and detecting outliers,data normalization,data centering and scaling,data transformation.We discuss the advantages and limitations of each method.The choice for a suitable preprocessing method is determined by the biological hypothesis,the characteristics of the data set,and the selected statistical data analysis method.We then provide the perspective of their applications in the microbiome and metabolome research. 展开更多
关键词 Data centering and scaling Data normalization Data transformation Missing values MS-Baseddata preprocessing nmrdata preprocessing OUTLIERS Preprocessing/pretreatment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部