The CeO2‐TiO2(CeTi)and CeO2/WO3‐TiO2(CeWTi)catalysts were prepared by a sol‐gel precipitation method and their NH3‐NO/NO2 selective catalytic reduction(SCR)performance was studied.N2O formation and effect of oxyge...The CeO2‐TiO2(CeTi)and CeO2/WO3‐TiO2(CeWTi)catalysts were prepared by a sol‐gel precipitation method and their NH3‐NO/NO2 selective catalytic reduction(SCR)performance was studied.N2O formation and effect of oxygen concentration on SCR performance over CeWTi catalyst were also investigated while varying the NO2/NOx ratio.Results indicate that fast SCR behavior of CeWTi catalyst has the best NH3‐NO/NO2 SCR performance due to the catalyst reoxidation rate by NO2 higher than by O2.Compared with CeTi catalyst,CeWTi catalyst exhibits higher de‐NOx performance under NH3‐NO/NO2 SCR conditions.As the CeTi and CeWTi catalysts exhibit similar redox property,addition of WO3 provides more acid sites which accelerate the reaction between NH4NO3 and NO to get a superior low‐temperature activity.Amount of N2O formation shows a peak at 250 oC mainly derived from NH4NO3 decomposition.展开更多
A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction(SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, N...A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction(SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS). The results indicate that the Mn Ox-Nb Ox-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300℃. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O.展开更多
基金supported by the National Natural Science Foundation of China(51775296,51375253)~~
文摘The CeO2‐TiO2(CeTi)and CeO2/WO3‐TiO2(CeWTi)catalysts were prepared by a sol‐gel precipitation method and their NH3‐NO/NO2 selective catalytic reduction(SCR)performance was studied.N2O formation and effect of oxygen concentration on SCR performance over CeWTi catalyst were also investigated while varying the NO2/NOx ratio.Results indicate that fast SCR behavior of CeWTi catalyst has the best NH3‐NO/NO2 SCR performance due to the catalyst reoxidation rate by NO2 higher than by O2.Compared with CeTi catalyst,CeWTi catalyst exhibits higher de‐NOx performance under NH3‐NO/NO2 SCR conditions.As the CeTi and CeWTi catalysts exhibit similar redox property,addition of WO3 provides more acid sites which accelerate the reaction between NH4NO3 and NO to get a superior low‐temperature activity.Amount of N2O formation shows a peak at 250 oC mainly derived from NH4NO3 decomposition.
基金supported by the Ministry of Science and Technology of China (No. 2010CB732304)the Science and Technology Department of Zhejiang Province Project (No. 2011C31010)the National Natural Science Foundation of China (No. 51202126)
文摘A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction(SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS). The results indicate that the Mn Ox-Nb Ox-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300℃. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O.