期刊文献+
共找到751篇文章
< 1 2 38 >
每页显示 20 50 100
Sn nucleation and growth from Sn(II)dissolved in ethylene glycol:Electrochemical behavior and temperature effect
1
作者 Kiem Van DO Hieu Van NGUYEN Tu Manh LE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2714-2732,共19页
Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks obs... Thermodynamic and kinetic aspects of Sn nucleation and growth processes onto a glassy carbon electrode from SnCl2·2H2O dissolved in ethylene glycol solutions were studied.Typical reduction and oxidation peaks observed in voltammograms have demonstrated the capability of ethylene glycol solutions to electrodeposit Sn.The temperature-dependence of diffusion coefficient values derived from potentiodynamic and potentiostatic studies helped to determine and validate estimations of the activation energy for Sn(II)bulk diffusion.Chronoamperometric results have identified that,the suitable model to describe the early stage of Sn electrodeposition could be composed of Sn three-dimensional nucleation and diffusion-controlled growth and water reduction contributions,which was duly validated by theoretical and experimental approaches.From the model,typical kinetic parameters such as the nucleation frequency of Sn(A),number density of Sn nuclei(N_(0)),and diffusion coefficient of Sn(II)ions(D),were determined.The presence of Sn nuclei with excellent quality and their structures were verified using SEM,EDX,and XRD techniques. 展开更多
关键词 SN nucleation growth ethylene glycol nucleation kinetics ELECTRODEPOSITION
下载PDF
Na_(3)P interphase reduces Na nucleation energy enabling stable anode-less sodium metal batteries
2
作者 Haizhao Yang Haifeng Lv +8 位作者 En Zhou Xiaohao Ji Chunnian Chen Haolei Yu Zhaowei Sun Dawei Zhang Hongchang Jin Xianghua Kong Hengxing Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期448-455,共8页
Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ... Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency. 展开更多
关键词 Anode-less Phosphorus anode nucleation buffer layer Sodium metal Dendrite-free
下载PDF
Driving inward growth of lithium metal in hollow microcapsule hosts by heteroatom‐controlled nucleation
3
作者 Siwon Kim Hong Rim Shin +2 位作者 Ki Jae Kim Min‐Sik Park Jong‐Won Lee 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期262-272,共11页
The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving incr... The application of Li metal anodes in rechargeable batteries is impeded by safety issues arising from the severe volume changes and formation of dendritic Li deposits.Three‐dimensional hollow carbon is receiving increasing attention as a host material capable of accommodating Li metal inside its cavity;however,uncontrollable and nonuniform deposition of Li remains a challenge.In this study,we synthesize metal–organic framework‐derived carbon microcapsules with heteroatom clusters(Zn and Ag)on the capsule walls and it is demonstrated that Ag‐assisted nucleation of Li metal alters the outward‐to‐inward growth in the microcapsule host.Zn‐incorporated microcapsules are prepared via chemical etching of zeolitic imidazole framework‐8 polyhedra and are subsequently decorated with Ag by a galvanic displacement reaction between Ag^(+) and metallic Zn.Galvanically introduced Ag significantly reduces the energy barrier and increases the reaction rate for Li nucleation in the microcapsule host upon Li plating.Through combined electrochemical,microstructural,and computational studies,we verify the beneficial role of Ag‐assisted Li nucleation in facilitating inward growth inside the cavity of the microcapsule host and,in turn,enhancing electrochemical performance.This study provides new insights into the design of reversible host materials for practical Li metal batteries. 展开更多
关键词 hollow carbon hosts lithium metal batteries lithium plating metal-organic frameworks nucleation
下载PDF
Ribosome-inspired electrocatalysts inducing preferential nucleation and growth of three-dimensional lithium sulfide for high-performance lithium-sulfur batteries
4
作者 Zhen Wu Wenfeng He +7 位作者 Jiahui Yang Yunuo Gu Ruiqi Yang Yiran Sun Jiajia Yuan Xin Wang Junwu Zhu Yongsheng Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期517-526,共10页
Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trol... Nucleation of lithium sulfide(Li_(2)S)induced by electrocatalysts plays a crucial role in mitigating the shut-tle effect.However,short-chain polysulfides on electrocatalysts surfaces tend to re-dissolve into elec-trolytes,delaying Li_(2)S supersaturation and its nucleation.In this study,we draw inspiration from the ribosome-driven protein synthesis process in cells to prepare ultrasmall nitrogen-doped MoS_(2) nanocrys-tals anchored on porous nitrogen-doped carbon networks(N-MoS_(2)-NC)electrocatalysts.Excitedly,the ex-situ SEM demonstrates that ribosome-inspired N-MoS_(2)-NC electrocatalysts induce early nucleation and rapid growth of three-dimensional Li_(2)s during discharge.Theoretical calculations reveal that the Li-s bond length in N-MoS_(2)-Li_(2)S(100)is shorter,and the corresponding interfacial formation energy is lower than in MoS_(2)-Li_(2)S(100).This accelerated conversion of lithium polysulfides to Li_(2)S can enhance the utilization of active substances and inhibit the shuttle effect.This study highlights the potential of ribosome-inspired N-MoS_(2)-NC in improving the electrochemical stability of Li-S batteries,providing valuable insights for future electrocatalyst design. 展开更多
关键词 Lithium-sulfur batteries ELECTROCATALYSTS Nanocrystals Ribosome-inspired nucleation and growth
下载PDF
Nucleation of Supercooled Water by Neutrons: Latitude Dependence and Implications for Cloud Modelling
5
作者 Peter W. Wilson Elizabeth Wilson-Park Abraham G. Wilson 《Atmospheric and Climate Sciences》 2024年第2期221-232,共12页
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu... It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. . 展开更多
关键词 Climate Models Ice nucleation Neutrons SUPERCOOLING
下载PDF
Highly Reversible Zn Metal Anodes Enabled by Increased Nucleation Overpotential 被引量:4
6
作者 Zhengqiang Hu Fengling Zhang +8 位作者 Anbin Zhou Xin Hu Qiaoyi Yan Yuhao Liu Faiza Arshad Zhujie Li Renjie Chen Feng Wu Li Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期197-209,共13页
Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has... Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition. 展开更多
关键词 nucleation overpotential Complexing agent Zn batteries Zn deposition
下载PDF
Nucleation and growth control for iron-and phosphorus-rich phases from a modified steelmaking waste slag 被引量:1
7
作者 Juncheng Li Guoxuan Li +7 位作者 Feng Qiu Rong Wang Jinshan Liang Yi Zhong Dong Guan Jingwei Li Seetharaman Sridhar Zushu Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期378-387,共10页
Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable... Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively. 展开更多
关键词 steelmaking slag MAGNETITE calcium phosphate nucleation GROWTH KINETICS
下载PDF
Inner-pore reduction nucleation of palladium nanoparticles in highly conductive wurster-type covalent organic frameworks for efficient oxygen reduction electrocatalysis 被引量:1
8
作者 Weiwen Wang Lu Zhang +4 位作者 Tianping Wang Zhen Zhang Xiangnan Wang Chong Cheng Xikui Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期543-552,I0014,共11页
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ... Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery. 展开更多
关键词 Covalent organic frameworks Wurster-type structure In-situ reduction nucleation Palladium nanoparticles Oxygen reduction electrocatalysis
下载PDF
Simultaneous refinement of α-Mg grains and β-Mg_(17)Al_(12) in Mg-Al based alloys via heterogeneous nucleation on Al_(8)Mn_(4)Sm 被引量:1
9
作者 Jun-Chen Chen Mei-Xuan Li +4 位作者 Zhi-Yang Yu Zhao-Yuan Meng Cheng Wang Zhi-Zheng Yang Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期348-360,共13页
Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary an... Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation.Surprisingly,we found that theα-Mg andβ-Mg_(17)Al_(12) in the AZ80 alloy can be simultaneously refined after 0.2 wt.%Sm addition,with the grain size decreasing from∼217±15μm to∼170±10μm and theβ-Mg_(17)Al_(12) morphology changing from a typical continuous network to a nod-like or spherical structure.The simultaneous refinement mechanism is investigated through solidification simulation,transmission electron microscopy(TEM),and differential thermal analysis(DTA).In the AZ80-0.2Sm alloy,many Al8Mn4Sm particles can be observed near the center of theα-Mg grains or inside theβ-Mg_(17)Al_(12).Crystallographic calculations further reveal that the Al8Mn4Sm has good crystallographic matching with both theα-Mg andβ-Mg_(17)Al_(12),so it possesses the potency to serve as heterogeneous nucleation sites for both phases.The promoted heterogeneous nucleation on the Al8Mn4Sm decreases the undercooling required by the nucleation of the primary and eutectic phases,which enhances the heterogeneous nucleation rate,thus causing the simultaneous refinement of theα-Mg andβ-Mg_(17)Al_(12).The orientation relationships between the Al8Mn4Sm and Mg/Mg_(17)Al_(12) are identified,which are[1210]_(Mg)//[010]_(Al8Mn4Sm),(1010)_(Mg)//(301)_(Al8Mn4Sm) and[112]_(Mg_(17)Al_(12))//[010]_(Al8Mn4Sm),(110)_(Mg_(17)Al_(12))//(301)_(Al8Mn4Sm),respectively.Furthermore,the refinement of theβ-Mg_(17)Al_(12) accelerates its dissolution during the solution treatment,which is beneficial for cost saving in industrial applications.Other Al8Mn4RE compounds such as Al8Mn4Y might have the same positive effect on the simultaneous refinement due to the similar physicochemical properties of rare earth elements.This work not only proves the possibility of simultaneously refining the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation,but also provides new insights into the development of refiners for cast Mg alloys. 展开更多
关键词 Magnesium alloys Microstructure refinement Primaryα-Mg Eutecticβ-Mg_(17)Al_(12) Rare earth Heterogeneous nucleation
下载PDF
Different roles of surfaces’ interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
10
作者 傅宣豪 周昕 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期40-46,共7页
The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There i... The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There is still a lack of clear physical pictures about the central question how various features of material surfaces affect their capability in facilitating ice nucleation. Via molecular dynamics simulations, here we show that the detailed features of surfaces, such as atomic arrangements, lattice parameters, hydrophobicity, and function forms of surfaces’ interaction to water molecules, generally affect the ice nucleation through the average adsorption energy per unit-area surfaces to individual water molecules, when the lattice of surfaces mismatches that of ice. However, for the surfaces whose lattice matches ice, even the detailed function form of the surfaces’ interaction to water molecules can largely regulate the icing ability of these surfaces. This study provides new insights into understanding the diverse relationship between various microscopic features of different material surfaces and their nucleation efficacy. 展开更多
关键词 ice nucleation molecular simulations lattice match HYDROPHILICITY
原文传递
Bubble nucleation in spherical liquid cavity wrapped by elastic medium
11
作者 张先梅 李凡 +5 位作者 王成会 胡静 莫润阳 沈壮志 郭建中 林书玉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期323-332,共10页
According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects.... According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects. An enclosed spherical liquid cavity surrounded by elastic medium is introduced to model the nucleation process in tissue. Based on the equilibrium pressure relationship of a quasi-static process, the expressions of the threshold and the modified nucleation rate are derived by considering the tissue elasticity. It is shown that the constraint plays an important role in the nucleation process. There is a positive correlation between nucleation threshold pressure and constraint, which can be enhanced by an increasing tissue elasticity and reducing the size of the cavity. Meanwhile, temperature is found to be a key parameter of nucleation process, and cavitation is more likely to occur in confined liquids at temperature T > 100℃. In contrast, less influences are induced by these factors, such as bulk modulus, liquid cavity size, and acoustic frequency. Although these theoretical predictions of the thresholds have been demonstrated by many previous researches, much lower thresholds can be obtained in liquids containing dissolved gases, e.g., the nucleation threshold is about-21 MPa in a liquid of 0.8-nm gas nuclei at room temperature. Moreover, when there is a gas nucleus of 20 nm, the theoretical threshold pressure might be less than1 MPa. 展开更多
关键词 elastic confinement liquid cavities cavitation nucleation
原文传递
Kinetic nucleation of primary α(Al) dendrites in Al-7%Si-Mg cast alloys with Ce and Sr additions 被引量:3
12
作者 陈忠伟 郝小雷 +1 位作者 赵静 马翠英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3561-3567,共7页
Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microsco... Nucleation of dendritic primaryα(Al) phase with addition of element Ce and Sr in hypoeutectic Al-7%Si-Mg cast alloy was investigated by using differential scanning calorimetry (DSC) and scanning electron microscopy. DSC results were used to calculate the activation energy and nucleation work of primaryα(Al) phase. The results show that the values of activation energy and nucleation work are decreased and the nucleation frequency is increased with the additions of Ce and Sr to the alloys. Moreover, the grain size of dendriticα(Al) phase is well refined, and the nucleation temperatures of primaryα(Al) dendrites are decreased with the additions of Ce and Sr. The effects of elements Ce and Sr additions on kinetic nucleation of primary α(Al) phases were also discussed in hypoeutectic Al-7%Si-Mg cast alloy. 展开更多
关键词 aluminium alloy primaryαdendrite nucleation grain refinement activation energy nucleation work CE SR
下载PDF
Nucleation Thermodynamics inside Micro/nanocavity
13
作者 Qiuxiang LIU Yanjuan ZHU +1 位作者 Guowei YANG Qibin YANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第2期183-186,共4页
A thermodynamic approach at the nanometer scale was performed for the heterogeneous nucleation inside nanocavity, and an analytical expression of the critical energy of nucleation was evaluated considering a rough bal... A thermodynamic approach at the nanometer scale was performed for the heterogeneous nucleation inside nanocavity, and an analytical expression of the critical energy of nucleation was evaluated considering a rough ball nucleus nucleating inside nanocavity. Compared with the case of the nucleation locating on planar or convex substrate, the critical energy of nucleation inside the concave substrate is the smallest. Based on the thermodynamic and kinetic analyses, at low supersaturation, the smaller the curvature radius of cavity and/or the smaller the contact angle, the smaller the critical energy of nucleation, and the larger the nucleation rate. At high supersaturation, the nucleation rate increases with increasing the contact angle and/or increasing the curvature radius of cavity. In this way, at the low supersaturation, the heterogeneous nucleation rate is larger than the homogeneous one, as the nucleation rate is mainly determined by the heterogeneous nucleation. At the high supersaturation, the heterogeneous nucleation rate is smaller than the homogeneous one, as the nucleation rate is mainly determined by the homogeneous nucleation. 展开更多
关键词 Heterogeneous nucleation nucleation barrier nucleation rate
下载PDF
Nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy 被引量:5
14
作者 孙瑜 庞绍平 +2 位作者 刘学然 杨子润 孙国雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2186-2191,共6页
The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing ... The nucleation and growth of eutectic cell in hypoeutectic Al-Si alloy was investigated using optical microscopy and scanning electron microscopy equipped with electron backscattering diffraction(EBSD).By revealing the eutectic cells and analyzing the crystallographic orientation,it was found that both the eutectic Si and Al phases in an eutectic cell were not single crystal,representing an eutectic cell consisting of small 'grains'.It is also suggested that the eutectic nucleation mode can not be determined based on the crystallographic orientation between eutectic Al phases and the neighboring primary dendrite Al phases.However,the evolution of primary dendrite Al phases affects remarkably the following nucleation and growth of eutectic cell.The coarse flake-fine fibrous transition of eutectic Si morphology involved in impurity elements modification may be independent of eutectic nucleation. 展开更多
关键词 hypoeutectic Al-Si alloy eutectic cell nucleation GROWTH
下载PDF
Magnesium vapor nucleation in phase transitions and condensation under vacuum conditions 被引量:4
15
作者 杨成博 田阳 +3 位作者 曲涛 杨斌 徐宝强 戴永年 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期561-569,共9页
Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium... Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate. 展开更多
关键词 magnesium vapor VACUUM phase transition CONDENSATION nucleation
下载PDF
Enhancement of nucleation of diamond films deposited on copper substrate by nickel modification layer 被引量:3
16
作者 刘学璋 魏秋平 +1 位作者 翟豪 余志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期667-673,共7页
A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri... A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly. 展开更多
关键词 diamond film nickel interlayer Cu substrate chemical vapor deposition nucleation kinetics surface modification
下载PDF
Regional epidemic laws of poplar Ice Nucleation Active bacterial canker 被引量:1
17
作者 董爱荣 项存悌 +6 位作者 刘学峰 李淳 王传伟 林海波 张景华 潘淑英 邓立文 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第3期165-168,209,共4页
Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected... Through the methods of correlation analysis and main factor analysis, the relationship between the poplar INA bacte-rial canker and circumstances was analyzed and 9 main factors for affecting the disease were selected. Based on the compre-hensive analysis of main factors and induced factors, the standard for risk grades of this disease was promoted and northeast region of China was divided into 4 districts with different risk grades: seriously occurring district, commonly occurring district, occasionally occurring district, and un-occurring district. Nonlinear regression analysis for six model curves showed that the Richard growth model was suitable for describing the temporal dynamics of poplar INA bacterial canker. By stepwise variable selection method, the multi-variable linear regression forecasting equation was set up to predict the next year抯 disease index, and the GM (1,1) model was also set up by grey method to submit middle or long period forecast. 展开更多
关键词 POPLAR Ice nucleation active (INA) bacterial canker Epidemic law FORECAST
下载PDF
Complex(Mn,X)S compounds-major sites for graphite nucleation in grey cast iron 被引量:4
18
作者 Iulian Riposan Mihai Chisamera +1 位作者 Stelian Stan Doug White 《China Foundry》 SCIE CAS 2009年第4期352-357,共6页
Despite the cubic system, the ability of sulphides to nucleate graphite can be enhanced by inoculating elements which transform them in complex compounds with a better lattice matching to graphite, a low coagulation c... Despite the cubic system, the ability of sulphides to nucleate graphite can be enhanced by inoculating elements which transform them in complex compounds with a better lattice matching to graphite, a low coagulation capacity, good stability and adequate interfacial energy. (Mn,X)S compounds, usually less than 5.0 μm in size, with an average 0.4-2.0 μm well defined core (nucleus), were found to be important sites for graphite nucleation in grey irons. A three-stage model for the nucleation of graphite in grey irons is proposed: (1) Very small microinclusions based on strong deoxidizing elements (Mn, Si, Al, Ti, Zr) are formed in the melt; (2) Nucleation of complex (Mn,X)S compounds at these previously formed micro-inclusions; (3) Graphite nucleates on the sides of the (Mn,X)S compounds with lower crystallographic misfit. AI appears to have a key role in this process, as Al contributes to the formation of oxides in the first stage and favors the presence of Sr and Ca in the sulphides, in the second stage. The 0.005-0.010% Al range was found to be beneficial for lower undercooling solidification, type-A graphite formation and carbides avoidance. 展开更多
关键词 grey iron graphite nucleation (Mn X)S AI key role graphite nucleation model
下载PDF
Molecular simulation studies on natural gas hydrates nucleation and growth:A review 被引量:2
19
作者 Zheng-cai Zhang Neng-you Wu +7 位作者 Chang-ling Liu Xi-luo Hao Yong-chao Zhang Kai Gao Bo Peng Chao Zheng Wei Tang Guang-jun Guo 《China Geology》 2022年第2期330-344,共15页
How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related tech... How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related technology.Due to its limitations on both spatial and temporal dimensions,experiment cannot fully explain this issue on a micro-scale.With the development of computer technology,molecular simulation has been widely used in the study of hydrate formation because it can observe the nucleation and growth process of hydrates at the molecular level.This review will assess the recent progresses in molecular dynamics simulation of hydrate nucleation and growth,as well as the enlightening significance of these developments in hydrate applications.At the same time,combined with the problems encountered in recent hydrate trial mining and applications,some potential directions for molecular simulation in the research of hydrate nucleation and growth are proposed,and the future of molecular simulation research on hydrate nucleation and growth is prospected. 展开更多
关键词 Natural gas hydrates Methane hydrate Molecular simulations Hydrate nucleation Hydrate growth Hydrate formation nucleation theory NGHs exploration trial engineering Oil and gas exploration engineering
下载PDF
Suppression of ice nucleation in supercooled water under temperature gradients 被引量:1
20
作者 Li-Ping Wang Wei-Liang Kong +2 位作者 Pei-Xiang Bian Fu-Xin Wang Hong Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期657-666,共10页
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gra... Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely. 展开更多
关键词 supercooled water ice nucleation temperature gradient thermodynamic analysis classical nucleation theory
原文传递
上一页 1 2 38 下一页 到第
使用帮助 返回顶部