This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under ...This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.展开更多
The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-S...The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.展开更多
We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Ω of R3. And a result on the exi...We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Ω of R3. And a result on the existence and uniqueness of global spherically symmetric classical solutions is obtained. Here the initial data could be large and initial vacuum is allowed.展开更多
基金supported by the Collaborative Innovation Center on Beijing Society-building and Social GovernanceNSFC(11371042)+2 种基金BNSF(1132006)the key fund of the Beijing education committee of ChinaChina Postdoctoral Science Foundation funded project
文摘This paper is concerned with the bipolar compressible Navier-Stokes-Maxwell system for plasmas. We investigated, by means of the techniques of symmetrizer and elaborate energy method, the Cauchy problem in R^3. Under the assumption that the initial values are close to a equilibrium solutions, we prove that the smooth solutions of this problem converge to a steady state as the time goes to the infinity. It is shown that the difference of densities of two carriers converge to the equilibrium states with the norm ||·||H^s-1, while the velocities and the electromagnetic fields converge to the equilibrium states with weaker norms than ||·||H^s-1. This phenomenon on the charge transport shows the essential difference between the unipolar Navier-Stokes-Maxwell and the bipolar Navier-Stokes-Maxwell system.
基金supported by the Joint Funds of National Natural Science Foundation of China(Grant No.U1204103)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530032)the Science and Technology Research Projects of Education Department of Henan Province(Grant No.13A110731)
文摘The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.
基金supported by National Natural Science Foundation of China(Grant No.11331005)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT13066)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges(Grant No.CCNU12C01001)Excellent Doctorial Dissertation Cultivation Grant from Central Normal University
文摘We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Ω of R3. And a result on the existence and uniqueness of global spherically symmetric classical solutions is obtained. Here the initial data could be large and initial vacuum is allowed.