We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly ...We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.展开更多
The reduction diffusion method was performed for the sludge scrap of Nd-Fe-B sintered magnets with adding Ca metal to recover the oxidized Nd-Fe-B phase. After washing the resultant powders to remove Ca metal componen...The reduction diffusion method was performed for the sludge scrap of Nd-Fe-B sintered magnets with adding Ca metal to recover the oxidized Nd-Fe-B phase. After washing the resultant powders to remove Ca metal component, the powders obtained were recycled as an isotropic magnetic powder by the melt spinning method. The magnetic properties of powders as recycled were inferior, especially for the coercivity value, due to the deletion of rare earth metals during the washing process. The adjustment of metal composition, i.e., the addition of Nd metal, at the melt spinning process improved the magnetic properties to be B r=~0.75 T, H cj=~0.93 mA·m -1, and (BH) max=~91 kJ·m -3. The magnetic properties of the bonded magnets prepared from the composition-adjusted powders were B r=~0.66 T, H cj=~0.92 mA·m -1, and (BH) max=~70 kJ·m -3, which are approximately comparable to the commercially available MQPB boned one (B r=~0.73 T, H cj=~0.79 mA·m -1, and (BH) max=~86 kJ·m -3).展开更多
Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for ...Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron(Nd-Fe-B)sintered magnets.In the present study,centerless grinding sludge from the Nd-Fe-B sintered magnet machining process was selected as the starting material.The sludge was subjected to a reduction-diffusion(RD)process in order to synthesize recycled neodymium magnet(Nd2Fe14B)powder;during this process,most of the valuable elements,including neodymium(Nd),praseodymium(Pr),gadolinium(Gd),dysprosium(Dy),holmium(Ho),and cobalt(Co),were recovered simultaneously.Calcium chloride(CaCl2)powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency.The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio.It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio(calcium/sludge)and reaction temperature were 40 wt% and 1050℃,respectively.The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd-Fe-B sintered magnets with a remanence of 12.1 kG(1 G=1×10^-4T),and a coercivity of 14.6 kOe(1 Oe=79.6A·m^-1),resulting in an energy product of 34.5 MGOe.This recycling route promises a great advantage in recycling efficiency as well as in cost.展开更多
Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time de...Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.展开更多
The Nd2Fe14B grain growth behavior in sintered Nd-Fe-B magnets was quantitatively described.The effects of sintering temperature and time,and alloy powder size and its distribution on grain growth process were analyze...The Nd2Fe14B grain growth behavior in sintered Nd-Fe-B magnets was quantitatively described.The effects of sintering temperature and time,and alloy powder size and its distribution on grain growth process were analyzed.Hence,possible grain growth mechanisms in these magnets were qualitatively discussed.The Nd2Fe14B grain growth proceeded at quite a high rate in the initial 0~1 h of sintering and from then onwards the grain growth rate decreased.A large average particle size or a wide particle size distribution of initial alloy powders was found to remarkably accelerate the grain growth process and even result in the occurrence of abnormal grain growth.On the basis of experimental results,two grain growth mechanisms were considered to operate during sintering of Nd-Fe-B magnets,that is,dissolution and re-precipitation of Nd2Fe14B particles,and Nd2Fe14B particle growth by coalescence.It was believed that Nd2Fe14B particle growth by coalescence not only produced a large average grain size and a wide grain size distribution,but also was the fundamental reason for the formation of abnormally large grains in the microstructure of sintered Nd-Fe-B magnets.展开更多
Magnetization and demagnetization curves and hysteresis loops applied different magnetizing.fields in sintered Nd-Fe-B and Nd-Dy-Fe-B magnets from thermally demagnetized and dc field-demagnetized states were investiga...Magnetization and demagnetization curves and hysteresis loops applied different magnetizing.fields in sintered Nd-Fe-B and Nd-Dy-Fe-B magnets from thermally demagnetized and dc field-demagnetized states were investigated at temperatures of up to 150℃.The first-quadrant remagnetization curves and the curves of coercive forces _MH_C versus rernagnetizing fietds H_m from dc field-demagnetized state at room temperature show a step around magnetizing field as absolute value of the maximum intrinsic coercivity.The steps of _MH_C-H_m curves shifted to lower remagnetizing fields and the shapes of magnetization curves changed from step type to precipitous type when temperature went up to 100~150℃ or after the specimen was thermally demagnetized at a temperature higher than the Curie temperature.The steep rise of knee coereivity with increasing magnetizing field is behind that of _MH_C.Note that the magnetic hardening in sintered Nd-Fe-B magnets is controlled by pinning of domain walls.展开更多
Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The mag...Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets.展开更多
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem...Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.展开更多
In traditional Nd-Fe-B-based sintered magnets,the composition,role of each element and microstruc-tures have been extensively investigated globally since they were invented in 1983.However,the effects of boron(B)conte...In traditional Nd-Fe-B-based sintered magnets,the composition,role of each element and microstruc-tures have been extensively investigated globally since they were invented in 1983.However,the effects of boron(B)content and post-sinter annealing(PSA)on the microstructure and magnetic properties have been least studied so far and the relative mechanisms are not yet clear.In this paper,we investigated the influence of B on the magnetic performance and microstructure of Nd-Fe-B sintered magnets origi-nally containing copper(Cu),gallium(Ga)and titanium(Ti).It is shown that the intrinsic coercivity has a substantial increment of 2.86 kOe and the remanence has a slight reduction of 0.16 kGs when B content is reduced from 0.980 wt.%to 0.900 wt.%.Moreover,there is a coercivity increment of 27.3%and 65.3%for samples with 0.980 wt.%and 0.900 wt.%B content after PSA,respectively.It is shown that the im-pacts of B content and PSA are significant and their regulation mechanisms are worthwhile to be studied systematically.Furthermore,it is revealed by microstructural analysis that high coercivity of the sample with 0.900 wt.%B after PSA results from the uniform distribution of Ga,Cu,Nd,and the formation of RE 6(Fe,M)14(RE=Pr,Nd,M=Cu,Ga)compound in triple junction phases.The dilution of Fe content in grain boundary phases(GB phases)also plays an important role.It is found out that decrease of the re-manence is mainly due to reduction of the matrix phase and c-axis alignment degree.In this study,we explored a new path to develop Nd-Fe-B-based sintered magnets with high comprehensive properties by novel approaches through varying B content,PSA technique and co-adding trace elements.展开更多
To reduce the sensitivity of grain growth to sintering temperature for improving property consistency of sintered Nd-Fe-B magnets, combined additions of Zr and Nb were investigated. It was found that when Zr content w...To reduce the sensitivity of grain growth to sintering temperature for improving property consistency of sintered Nd-Fe-B magnets, combined additions of Zr and Nb were investigated. It was found that when Zr content was increased to 0.07 at. pct, abnormal grain growth was effectively hindered even when the sintering temperature reached 1100℃. With combined additions of 0.07 at. pct Zr and 0.07 at. pct Nb, the sensitivity of grain growth to sintering temperature was greatly reduced consistency than the magnets containing no Zr and also improved. The magnets sintered at 1100℃ showed higher property Nb. In addition, the magnetic properties of magnets were also improved.展开更多
Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is ...Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is crucial to the sustainable rare-earth industry.However,the current multistage wet process recycling technique for the sludge wastes involves high fabrication cost,excessive energy consumption,and heavy environmental burden.Therefore,short-process recycling techniques for Nd-Fe-B sintered magnet wastes have drawn increasing attention in the past decades.In this paper,we review recent efforts into short-process recycling Nd-Fe-B sintered magnet sludge wastes with emphasis on in-situ recycling techniques.展开更多
Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In presen...Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route.展开更多
The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultan...The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.展开更多
In view of the uneven distribution of the core-shell structure of sintered Nd-Fe-B magnets after grain boundary diffusion,this study proposes to use high-melting-point and reactive element titanium(Ti)as an additive t...In view of the uneven distribution of the core-shell structure of sintered Nd-Fe-B magnets after grain boundary diffusion,this study proposes to use high-melting-point and reactive element titanium(Ti)as an additive to increase the diffusion channels and to enhance the diffusion of heavy rare earth elements along the grain boundary phase.By adding Ti element,the diffusion depth and hence the intrinsic coercivity of magnets are increased significantly.The addition of Ti increases the coercivity at two stages:initially from 16.07 to 16.29 kOe by addition effect,and then from 16.29 to 25.16 kOe by facilitating the diffusion of Tb element.The formation of TiB_(2) phase improves the periodic arrangement of the crystal structure in the surroundings of the grain boundary phase and enhances its activity.The improved grain boundary diffusion and better core-shell structure distribution provide a theoretical guidance fo r solving the problem of diffusion depth in bulk magnets.展开更多
We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magn...We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grains form in-situ core-shell structure where Y gathers in the core and Nd mainly distributes in the shell.Compared with pure Nd-Fe-B magnets,the magnetic performances of Y substituted magnets slightly decrease on account of the poor intrinsic magnetic properties of Y_(2)Fe_(14)B.Fortunately,the μ_(O)M_(r),μ_(O)H_(cj) and(BH)_(max) of the 20 at% Y magnet still remain at a high level of 1.325 kG,1.173 kOe and 342.884 kj/m^(3),which approaches the performances of commercial N45-grade magnet.The service performances of Y substituted magnets indicate that though the surface corrosion products and Vickers hardness of the NdY-Fe-B magnets increase to a certain extent compared to Nd-Fe-B,the magnets with Y substitution still display relatively good service performances.Therefore,on the basis of sacrificing little partial magnetic and service performances,Y substituted Nd can still prepare NdY-Fe-B medium-grade magnets.By this way,we achieve the balanced utilization of rare earth resources,which has significant meanings for the industry and scientific research.展开更多
In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-...In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively.展开更多
Different from the grain boundary diffusion process(GBDP),which is suitable for modifying thin magnet,a green-pressing agents permeation process(GAPP)that uses low melting point alloys was applied to the Nd-Fe-B green...Different from the grain boundary diffusion process(GBDP),which is suitable for modifying thin magnet,a green-pressing agents permeation process(GAPP)that uses low melting point alloys was applied to the Nd-Fe-B green compact with a thickness over 15 mm to reconstruct the boundary microstructure of a sintered Nd-Fe-B magnet.The coercivity increases from 12.3 kOe for the sample free of Pr80Al20 to16.8 kOe for the sample with 2 wt%Pr80Al20.By further increasing the Pr80Al20 content to 3 wt%,the coercivity increases slightly,but the remanence and Hk/Hcj deteriorate obviously.The optimal comprehensive properties of Hcj=16.8 kOe,Br=13.4 kG and Hk/Hcj=0.975 are obtained at 2 wt%Pr80Al20,since matrix phase grains are separated by relatively continuous thin grain boundary layers,which weaken the magnetic coupling between adjacent grains.The coercivities of the samples from the GAPP that use2 wt%Pr80Al20,Pr70Al30 and Pr60Tb20Al20 alloys,respectively,can be enhanced to a large extent.However,the coercivity of the magnet reconstructed with Pr80Al20 is lower than that of the sample with Pr60Tb20Al20 but is higher than that of the sample reconstructed with Pr70Cu30 alloy.Moreover,the coercivity of the sample from the GAPP using 2 wt%Pr80Al20 is much higher than that of the sample from the GBDP,which is due to a nearly uniform boundary microstructure from the surface to the interior of the thick magnet from the GAPP,thus providing new insights into the fabrication of thick and bulky permanent magnets with high coercivity.展开更多
Tb coating on the surface of commercial sintered Nd-Fe-B magnet was prepared by DC magnetron sputtering.The secondary heat treatment was used to regulate the microstructure for the enhancement of coercivity,namely dif...Tb coating on the surface of commercial sintered Nd-Fe-B magnet was prepared by DC magnetron sputtering.The secondary heat treatment was used to regulate the microstructure for the enhancement of coercivity,namely diffusion treatment and annealing treatment.The coercivity increases significantly from 18.3 to 28.0 kOe,the remanence decreases slightly from 14.1 to 14.0 kGs,and the comprehensive magnetic properties are higher than 75(Hcj+(BH)_(max)=76.7).SEM results indicate that,on the one hand,950℃is the optimal diffusion temperature.Lower diffusion temperature results in insufficient diffusion of Tb element.Higher diffusion temperature can lead to the main phase grain growth,the decrease of Nd-rich phase,and forming holes in the magnet.On the other hand,500℃is the optimal annealing temperature.Lower annealing temperature can result in the reduction of Nd-rich phase.Higher annealing temperature can generate the non-defined Nd-rich thin layer between grains.展开更多
An N38SH-grade magnet with low oxygen content was used to study the evolution of magnetic properties upon post-sin-tering annealing. Phase transformation of as-sintered magnet was investigated by differential scanning...An N38SH-grade magnet with low oxygen content was used to study the evolution of magnetic properties upon post-sin-tering annealing. Phase transformation of as-sintered magnet was investigated by differential scanning calorimetry (DSC). Three low temperature eutectic transition points were detected. Little change could be found when annealed below the lowest eutectic transition point. A wide annealing temperature range (460–560 oC) between the lowest and highest eutectic transition point was available for this magnet to achieve a relatively high coercivity (~1671 kA/m) at a relatively low Dy content (~3 wt.%). However, squareness fac-tor (SF) of the demagnetizing curve and its temperature stability were found to decrease after annealing above the highest eutectic transition point. This was attributed to the change of Cu content in the Nd-rich phase under different annealing temperatures.展开更多
基金the National Natural Science Foundation of China(Grant No.52101238)the“Pioneer”and“Leading Goose”Research and Development Program of Zhejiang(Grant No.2021C01190)Major Project of Ningbo Science and Technology Innovation 2025(Grant No.2020Z046)。
文摘We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method.After TbF_(3)diffusion,the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the(Nd,Tb)_(2)Fe_(14)B shell phase in the outer region of the matrix grains.The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope.For the TbF_(3)-diffused magnet,the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet.During demagnetization after full magnetization,the occurrence of domain wall motion(DWM)in the reproduced multi-domain regions was observed by the step method.The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity.The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.
基金ProjectsupportedbyaGrant in AidfortheCreationofinnovationsthroughBusiness Academic PublicSectorCooperation
文摘The reduction diffusion method was performed for the sludge scrap of Nd-Fe-B sintered magnets with adding Ca metal to recover the oxidized Nd-Fe-B phase. After washing the resultant powders to remove Ca metal component, the powders obtained were recycled as an isotropic magnetic powder by the melt spinning method. The magnetic properties of powders as recycled were inferior, especially for the coercivity value, due to the deletion of rare earth metals during the washing process. The adjustment of metal composition, i.e., the addition of Nd metal, at the melt spinning process improved the magnetic properties to be B r=~0.75 T, H cj=~0.93 mA·m -1, and (BH) max=~91 kJ·m -3. The magnetic properties of the bonded magnets prepared from the composition-adjusted powders were B r=~0.66 T, H cj=~0.92 mA·m -1, and (BH) max=~70 kJ·m -3, which are approximately comparable to the commercially available MQPB boned one (B r=~0.73 T, H cj=~0.79 mA·m -1, and (BH) max=~86 kJ·m -3).
基金financially supported by the National High Technology Research and Development Program of China(2012AA063201)the Beijing Municipal Natural Science Foundation(2172012)the State Key Laboratory of Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM17OF02).
文摘Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron(Nd-Fe-B)sintered magnets.In the present study,centerless grinding sludge from the Nd-Fe-B sintered magnet machining process was selected as the starting material.The sludge was subjected to a reduction-diffusion(RD)process in order to synthesize recycled neodymium magnet(Nd2Fe14B)powder;during this process,most of the valuable elements,including neodymium(Nd),praseodymium(Pr),gadolinium(Gd),dysprosium(Dy),holmium(Ho),and cobalt(Co),were recovered simultaneously.Calcium chloride(CaCl2)powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency.The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio.It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio(calcium/sludge)and reaction temperature were 40 wt% and 1050℃,respectively.The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd-Fe-B sintered magnets with a remanence of 12.1 kG(1 G=1×10^-4T),and a coercivity of 14.6 kOe(1 Oe=79.6A·m^-1),resulting in an energy product of 34.5 MGOe.This recycling route promises a great advantage in recycling efficiency as well as in cost.
文摘Electrochemical corrosion behavior of Nd-Fe-B sintered magnets in nitric acid, hydrochloric acid, sulfuric acid, phosphate acid and in oxalic acid was studied. Potentiodynamic polarization curves and immersion time dependence of corrosion rates of Nd-Fe-B sintered magnets in different acid solutions were tested. Microstructures of corroded Nd-Fe-B sintered magnets were investigated by means of SEM and AFM. The results indicate that in strong acid solutions of similar hydrogen ion concentration, the corrosion current increases in the order of HCl 〉 H3SO4 〉 HNO3 solution and Nd-Fe-B sintered magnets are passivated in phosphate acid and oxalic acid. Within 25 min, the corrosion rates of Nd-Fe-B sintered magnets in H2SO4 and H3PO4 solutions show a declining trend with immersion time, while in HNO3 and HCl solutions the corrosion rates are rising. And in H2C2O4 solution, weight of the magnets increases. The brim of Nd-Fe-B sintered magnets is corroded rather seriously and the size of the magnets changed greatly in nitric acid. The surfaces of the corroded magnets in the above mentioned acid solutions are all coarse.
基金Project supported by China National Development Plan for Key Fundamental Research(973)(G2000-67201-3)
文摘The Nd2Fe14B grain growth behavior in sintered Nd-Fe-B magnets was quantitatively described.The effects of sintering temperature and time,and alloy powder size and its distribution on grain growth process were analyzed.Hence,possible grain growth mechanisms in these magnets were qualitatively discussed.The Nd2Fe14B grain growth proceeded at quite a high rate in the initial 0~1 h of sintering and from then onwards the grain growth rate decreased.A large average particle size or a wide particle size distribution of initial alloy powders was found to remarkably accelerate the grain growth process and even result in the occurrence of abnormal grain growth.On the basis of experimental results,two grain growth mechanisms were considered to operate during sintering of Nd-Fe-B magnets,that is,dissolution and re-precipitation of Nd2Fe14B particles,and Nd2Fe14B particle growth by coalescence.It was believed that Nd2Fe14B particle growth by coalescence not only produced a large average grain size and a wide grain size distribution,but also was the fundamental reason for the formation of abnormally large grains in the microstructure of sintered Nd-Fe-B magnets.
文摘Magnetization and demagnetization curves and hysteresis loops applied different magnetizing.fields in sintered Nd-Fe-B and Nd-Dy-Fe-B magnets from thermally demagnetized and dc field-demagnetized states were investigated at temperatures of up to 150℃.The first-quadrant remagnetization curves and the curves of coercive forces _MH_C versus rernagnetizing fietds H_m from dc field-demagnetized state at room temperature show a step around magnetizing field as absolute value of the maximum intrinsic coercivity.The steps of _MH_C-H_m curves shifted to lower remagnetizing fields and the shapes of magnetization curves changed from step type to precipitous type when temperature went up to 100~150℃ or after the specimen was thermally demagnetized at a temperature higher than the Curie temperature.The steep rise of knee coereivity with increasing magnetizing field is behind that of _MH_C.Note that the magnetic hardening in sintered Nd-Fe-B magnets is controlled by pinning of domain walls.
基金This work was financially supported by the National Natural Science Foundation of China (No.50371019) and Beijing Municipal Science & Technology Commission Key Project (D0406002000091).
文摘Statistical model of magnetization reversal was used to simulate the magnetization reversal behavior in the sintered Nd-Fe-B magnets with double grain-size distributions due to the abnormal grain growth (AGG). The magnetic properties and mechanical properties due to the formation of AGG grains in Nd-Fe-B sintered magnets were tested. The results show that the magnetic properties, especially the rectangularity were severely deteriorated after the formation of the AGG grains and a step was shown on the demagnetization curve, and the occurrence of AGG may account for the poor rectangularity and existence of the step on demagnetization curve according to the statistical model of magnetization reversal. The fracture toughness and bending strength are lowered because of the stress concentration in the AGG grains. The SEM images show that the formation of AGG grains is caused by the solid sintering due to the absence of RE-rich phase. Statistical model of magnetization reversal can qualitative by explain the dependence of the magnetization reversal behavior on the grain size in the Nd-Fe-B sintered magnets.
基金Project(NCET-10-0364)supported by the Program for New Century Excellent Talents in University,ChinaProject(2012ZG0006)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51174095)supported the National Natural Science Foundation of China
文摘Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis.
基金supported by the National Natural Science Foundation of China(Nos.52371188,52061015)Young Talents Program of Jiangxi Provincial Major Discipline Academic and Technical Leaders Training Program(No.20212BCJ23008)+5 种基金Jiangxi Province Double Thousand Plan(No.jxsq2023201085),Jiangxi Provincial Natural Science Foundation(No.20212BAB214018)the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology(No.JXUSTQJYX2020003)National College Students Innovation and Entrepreneurship Training Program(No.202110407013)Technology Program of Fujian Province(Nos.2020H6027,2021T3063)Self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(No.E055B002)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021–3).
文摘In traditional Nd-Fe-B-based sintered magnets,the composition,role of each element and microstruc-tures have been extensively investigated globally since they were invented in 1983.However,the effects of boron(B)content and post-sinter annealing(PSA)on the microstructure and magnetic properties have been least studied so far and the relative mechanisms are not yet clear.In this paper,we investigated the influence of B on the magnetic performance and microstructure of Nd-Fe-B sintered magnets origi-nally containing copper(Cu),gallium(Ga)and titanium(Ti).It is shown that the intrinsic coercivity has a substantial increment of 2.86 kOe and the remanence has a slight reduction of 0.16 kGs when B content is reduced from 0.980 wt.%to 0.900 wt.%.Moreover,there is a coercivity increment of 27.3%and 65.3%for samples with 0.980 wt.%and 0.900 wt.%B content after PSA,respectively.It is shown that the im-pacts of B content and PSA are significant and their regulation mechanisms are worthwhile to be studied systematically.Furthermore,it is revealed by microstructural analysis that high coercivity of the sample with 0.900 wt.%B after PSA results from the uniform distribution of Ga,Cu,Nd,and the formation of RE 6(Fe,M)14(RE=Pr,Nd,M=Cu,Ga)compound in triple junction phases.The dilution of Fe content in grain boundary phases(GB phases)also plays an important role.It is found out that decrease of the re-manence is mainly due to reduction of the matrix phase and c-axis alignment degree.In this study,we explored a new path to develop Nd-Fe-B-based sintered magnets with high comprehensive properties by novel approaches through varying B content,PSA technique and co-adding trace elements.
基金supported by the National Natural Science Foundation of China(No.50701039)Program forNew Century Excellent Talents in University(No.05–0526)Program for Innovative Research Team in University(No.0651)
文摘To reduce the sensitivity of grain growth to sintering temperature for improving property consistency of sintered Nd-Fe-B magnets, combined additions of Zr and Nb were investigated. It was found that when Zr content was increased to 0.07 at. pct, abnormal grain growth was effectively hindered even when the sintering temperature reached 1100℃. With combined additions of 0.07 at. pct Zr and 0.07 at. pct Nb, the sensitivity of grain growth to sintering temperature was greatly reduced consistency than the magnets containing no Zr and also improved. The magnets sintered at 1100℃ showed higher property Nb. In addition, the magnetic properties of magnets were also improved.
基金the National Key R&D Project(2021YFB3500800,2020YFC1909004)Science and Technology Program ofAnhui Province(201903a07020002)+1 种基金Program of Top DisciplinesConstruction in Beijing(PXM2019_014204_500031)State Key Laboratoryof Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM17OF02)。
文摘Nd-Fe-B sintered magnet sludge wastes are one kind of typical commodity of recyclable rare-earth permanent magnet resources,and recycling such kind of wastes with economical and environmentally friendly techniques is crucial to the sustainable rare-earth industry.However,the current multistage wet process recycling technique for the sludge wastes involves high fabrication cost,excessive energy consumption,and heavy environmental burden.Therefore,short-process recycling techniques for Nd-Fe-B sintered magnet wastes have drawn increasing attention in the past decades.In this paper,we review recent efforts into short-process recycling Nd-Fe-B sintered magnet sludge wastes with emphasis on in-situ recycling techniques.
基金Project supported by the Beijing Municipal Natural Science Foundation(2172012)the International S&T Cooperation Program of China(2015DFG52020)the National High Technology Research and Development Program of China(2012AA063201)
文摘Environmental friendly recycling process for Nd-Fe-B sintered magnet sludges generated in the manufacturing process, which contain large amount of rare earth, including Nd, Pr and Dy, is badly needed so far. In present study, we have developed an effective route to obtain recycled sintered magnets from Nd-Fe-B sintered magnet sludges by calcium reduction-diffusion(RD) process. Compared to conventional recycling process, our research is focused on recovering most of the useful elements, including Nd, Pr, Dy, Co, and Fe together instead of just rare earth elements. To improve the recycling efficiency and reduce pollution, the co-precipitating parameters were simulated and calculated using MATLAB software. Most of useful elements were recovered by a co-precipitation method, and the obtained composite powders were then directly fabricated as recycled Nd-Fe-B powders by a calcium reduction-diffusion(RD) method. The recovery rates are 98%, 99%, 99%, 93%, and 99%, for Nd, Pr, Dy, Co, and Fe, respectively. The amount of useful elements contained in the recovered composite powders is greater than99.71 wt%. The process of RD for synthesizing NdFeB and subsequently removing CaO was thoroughly investigated. Furthermore, the recycled Nd-Fe-B magnet exhibits a remanence of 1.1 T, a coercivity of1053 kA/m, and an energy product of 235.6 kJ/m~3, respectively, indicating that recycled Nd-Fe-B sintered magnet was successfully recovered from the severely contaminated sludges via an effective recycling route.
基金the National HighTechnology Research and Development Program of China (No. 2007AA03Z438)the National Natural Science Foun-dation of China (No.50571028)the Beijing Municipal Science & Technology Commission, China (No. D0406002000091)
文摘The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.
基金Project supported by the National Natural Science Foundation of China(51801085)Jiangxi Province Science and Technology Cooperation Key Project(20212BDH80007)。
文摘In view of the uneven distribution of the core-shell structure of sintered Nd-Fe-B magnets after grain boundary diffusion,this study proposes to use high-melting-point and reactive element titanium(Ti)as an additive to increase the diffusion channels and to enhance the diffusion of heavy rare earth elements along the grain boundary phase.By adding Ti element,the diffusion depth and hence the intrinsic coercivity of magnets are increased significantly.The addition of Ti increases the coercivity at two stages:initially from 16.07 to 16.29 kOe by addition effect,and then from 16.29 to 25.16 kOe by facilitating the diffusion of Tb element.The formation of TiB_(2) phase improves the periodic arrangement of the crystal structure in the surroundings of the grain boundary phase and enhances its activity.The improved grain boundary diffusion and better core-shell structure distribution provide a theoretical guidance fo r solving the problem of diffusion depth in bulk magnets.
基金Project supported by the Key Research and Development Program of Shandong Province (2019JZZY010321)the Major Project of "Science and Technology Innovation 2025" in Ningbo City (2020Z050)+1 种基金Ningbo Natural Science Foundation (202003N4352)the Kunpeng Project in Zhejiang Province and National Natural Science Foundation of China (52101238)。
文摘We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grains form in-situ core-shell structure where Y gathers in the core and Nd mainly distributes in the shell.Compared with pure Nd-Fe-B magnets,the magnetic performances of Y substituted magnets slightly decrease on account of the poor intrinsic magnetic properties of Y_(2)Fe_(14)B.Fortunately,the μ_(O)M_(r),μ_(O)H_(cj) and(BH)_(max) of the 20 at% Y magnet still remain at a high level of 1.325 kG,1.173 kOe and 342.884 kj/m^(3),which approaches the performances of commercial N45-grade magnet.The service performances of Y substituted magnets indicate that though the surface corrosion products and Vickers hardness of the NdY-Fe-B magnets increase to a certain extent compared to Nd-Fe-B,the magnets with Y substitution still display relatively good service performances.Therefore,on the basis of sacrificing little partial magnetic and service performances,Y substituted Nd can still prepare NdY-Fe-B medium-grade magnets.By this way,we achieve the balanced utilization of rare earth resources,which has significant meanings for the industry and scientific research.
基金Project supported by the National Key R&D Program of China (2021YFB3500801)the National Natural Science Foundation of China(52271161)+5 种基金the Science and Technology Program of Anhui Province(201903a07020002)General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202010005009)"QiHang Programme"for Faculty of Materials and Manufacturing,BJUT (QH202211)Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031)Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources of the People’s Republic of China (2022IRERE302)the State Key Laboratory of Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM170F02)。
文摘In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively.
基金Project supported by the National Natural Science Foundation of China(51401021)the State Key Laboratory Advanced Metals and Materials(20162-14).
文摘Different from the grain boundary diffusion process(GBDP),which is suitable for modifying thin magnet,a green-pressing agents permeation process(GAPP)that uses low melting point alloys was applied to the Nd-Fe-B green compact with a thickness over 15 mm to reconstruct the boundary microstructure of a sintered Nd-Fe-B magnet.The coercivity increases from 12.3 kOe for the sample free of Pr80Al20 to16.8 kOe for the sample with 2 wt%Pr80Al20.By further increasing the Pr80Al20 content to 3 wt%,the coercivity increases slightly,but the remanence and Hk/Hcj deteriorate obviously.The optimal comprehensive properties of Hcj=16.8 kOe,Br=13.4 kG and Hk/Hcj=0.975 are obtained at 2 wt%Pr80Al20,since matrix phase grains are separated by relatively continuous thin grain boundary layers,which weaken the magnetic coupling between adjacent grains.The coercivities of the samples from the GAPP that use2 wt%Pr80Al20,Pr70Al30 and Pr60Tb20Al20 alloys,respectively,can be enhanced to a large extent.However,the coercivity of the magnet reconstructed with Pr80Al20 is lower than that of the sample with Pr60Tb20Al20 but is higher than that of the sample reconstructed with Pr70Cu30 alloy.Moreover,the coercivity of the sample from the GAPP using 2 wt%Pr80Al20 is much higher than that of the sample from the GBDP,which is due to a nearly uniform boundary microstructure from the surface to the interior of the thick magnet from the GAPP,thus providing new insights into the fabrication of thick and bulky permanent magnets with high coercivity.
基金the National Key Research and Development Program of China(2016YFB0700902)the Major Science and Technology Projects in Hebei Province(19041029Z)。
文摘Tb coating on the surface of commercial sintered Nd-Fe-B magnet was prepared by DC magnetron sputtering.The secondary heat treatment was used to regulate the microstructure for the enhancement of coercivity,namely diffusion treatment and annealing treatment.The coercivity increases significantly from 18.3 to 28.0 kOe,the remanence decreases slightly from 14.1 to 14.0 kGs,and the comprehensive magnetic properties are higher than 75(Hcj+(BH)_(max)=76.7).SEM results indicate that,on the one hand,950℃is the optimal diffusion temperature.Lower diffusion temperature results in insufficient diffusion of Tb element.Higher diffusion temperature can lead to the main phase grain growth,the decrease of Nd-rich phase,and forming holes in the magnet.On the other hand,500℃is the optimal annealing temperature.Lower annealing temperature can result in the reduction of Nd-rich phase.Higher annealing temperature can generate the non-defined Nd-rich thin layer between grains.
基金Project supported by the National Natural Science Foundation of China(51171111)
文摘An N38SH-grade magnet with low oxygen content was used to study the evolution of magnetic properties upon post-sin-tering annealing. Phase transformation of as-sintered magnet was investigated by differential scanning calorimetry (DSC). Three low temperature eutectic transition points were detected. Little change could be found when annealed below the lowest eutectic transition point. A wide annealing temperature range (460–560 oC) between the lowest and highest eutectic transition point was available for this magnet to achieve a relatively high coercivity (~1671 kA/m) at a relatively low Dy content (~3 wt.%). However, squareness fac-tor (SF) of the demagnetizing curve and its temperature stability were found to decrease after annealing above the highest eutectic transition point. This was attributed to the change of Cu content in the Nd-rich phase under different annealing temperatures.