There is increasing evidence that infants with mild neonatal encephalopathy(NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants...There is increasing evidence that infants with mild neonatal encephalopathy(NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants need to be diagnosed within 6 hours of birth, corresponding with the window of opportunity for treatment of moderate to severe NE, compared to the retrospective grading over 2 to 3 days, typically with imaging and formal electroencephalographic assessment in the pre-hypothermia era. This shift in diagnosis may have increased the apparent prevalence of brain damage and poor neurological outcomes seen in infants with mild NE in the era of hypothermia. Abnormal short term outcomes observed in infants with mild NE include seizures, abnormal neurologic examination at discharge, abnormal brain magnetic resonance imaging and difficulty feeding. At 2 to 3 years of age, mild NE has been associated with an increased risk of autism, language and cognitive deficits. There are no approved treatment strategies for these infants as they were not included in the initial randomized controlled trials for therapeutic hypothermia. However, there is already therapeutic creep, with many centers treating infants with mild NE despite the limited evidence for its safety and efficacy. The optimal duration of treatment and therapeutic window of opportunity for effective treatment need to be specifically established for mild NE as the evolution of injury is likely to be slower, based on preclinical data. Randomized controlled trials of therapeutic hypothermia for infants with mild NE are urgently required to establish the safety and efficacy of treatment. This review will examine the evidence for adverse outcomes after mild NE and dissect some of the challenges in developing therapeutic strategies for mild NE, before analyzing the evidence for therapeutic hypothermia and other strategies for treatment of these infants.展开更多
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische...Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.展开更多
Objective:To investigate the clinical effects of parental participation in nursing under the Interaction Model of Client Health Behavior(IMCHB)model in neonatal hypoxic-ischemic encephalopathy(HIE).Methods:The First A...Objective:To investigate the clinical effects of parental participation in nursing under the Interaction Model of Client Health Behavior(IMCHB)model in neonatal hypoxic-ischemic encephalopathy(HIE).Methods:The First Affiliated Hospital of Gannan Medical University included 46 newborns with HIE admitted from October 2021 to October 2023 into the study population.They were divided into a control group and an observation group according to the random number table method,with the control group adopting routine nursing,and the observation group implementing parental participation in nursing under the IMCHB model.The indicators of physical,intellectual,and psychomotor development of the two groups were compared before and after nursing.Results:The physical,intellectual,and psychomotor development of the observation group was higher than that of the control group after 3 months of nursing,and the difference was statistically significant(P<0.05).Conclusion:The implementation of the IMCHB model of parental participation in the clinical care of HIE neonates can further promote their physical,intellectual,and psychomotor development.展开更多
It is widely assumed that fetal ischemic brain injury during labor derives almost exclusively from severe, systemic hypoxemia with marked neonatal depression and acidemia. Severe asphyxia, however, is one of several c...It is widely assumed that fetal ischemic brain injury during labor derives almost exclusively from severe, systemic hypoxemia with marked neonatal depression and acidemia. Severe asphyxia, however, is one of several causes of perinatal neurological injury and may not be the most common;most neonates diagnosed with hypoxic-ischemic encephalopathy do not have evidence of severe asphyxia. Sepsis, direct brain trauma, and drug or toxin exposure account for some cases, while mechanical forces of labor and delivery that increase fetal intracranial pressure sufficiently to impair brain perfusion may also contribute. Because of bony compliance and mobile suture lines, the fetal skull changes shape and redistributes cerebrospinal fluid during labor according to constraints imposed by contractions, and bony and soft tissue elements of the birth canal as the head descends. These accommodations, including the increase in intracranial pressure, are adaptive and necessary for efficient descent of the head while safeguarding cerebral blood flow. Autonomic reflexes mediated through central receptors normally provide ample protection of the brain from the considerable pressure exerted on the skull. On occasion, those forces, which are transmitted intracranially, may overcome the various adaptive anatomical, cardiovascular, metabolic, and neurological mechanisms that maintain cerebral perfusion and oxygen availability, resulting in ischemic brain injury. Accepting the notion of a potentially adverse impact of fetal head compression suggests that avoidance of excessive uterine activity and of relentless pushing without steady progress in descent may offer protection for the fetal brain during parturition. Excessive head compression should be considered in the differential diagnosis of ischemic encephalopathy.展开更多
Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential ...Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'- deoxyuddine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.展开更多
Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promis...Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promising neuroprotective agents.We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment.In this study,41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group(hypothermia alone for 72 hours,n = 20) and erythropoietin group(hypothermia + erythropoietin 200 IU/kg for 10 days,n = 21).Our results show that compared with the control group,serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days.However,neurodevelopmental outcome was similar between the two groups at 9 months of age.These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammati...Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth.Multiple pathways are involved in the pathogenesis of perinatal inflammation.However,studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1.In this review,we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury.We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage,and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist,anakinra,as a safe and effective therapeutic intervention.We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment,and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.展开更多
基金supported by The Health Research Council of New Zealand(18/225,17/601,and 16/003)。
文摘There is increasing evidence that infants with mild neonatal encephalopathy(NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants need to be diagnosed within 6 hours of birth, corresponding with the window of opportunity for treatment of moderate to severe NE, compared to the retrospective grading over 2 to 3 days, typically with imaging and formal electroencephalographic assessment in the pre-hypothermia era. This shift in diagnosis may have increased the apparent prevalence of brain damage and poor neurological outcomes seen in infants with mild NE in the era of hypothermia. Abnormal short term outcomes observed in infants with mild NE include seizures, abnormal neurologic examination at discharge, abnormal brain magnetic resonance imaging and difficulty feeding. At 2 to 3 years of age, mild NE has been associated with an increased risk of autism, language and cognitive deficits. There are no approved treatment strategies for these infants as they were not included in the initial randomized controlled trials for therapeutic hypothermia. However, there is already therapeutic creep, with many centers treating infants with mild NE despite the limited evidence for its safety and efficacy. The optimal duration of treatment and therapeutic window of opportunity for effective treatment need to be specifically established for mild NE as the evolution of injury is likely to be slower, based on preclinical data. Randomized controlled trials of therapeutic hypothermia for infants with mild NE are urgently required to establish the safety and efficacy of treatment. This review will examine the evidence for adverse outcomes after mild NE and dissect some of the challenges in developing therapeutic strategies for mild NE, before analyzing the evidence for therapeutic hypothermia and other strategies for treatment of these infants.
基金supported by the National Natural Science Foundation of China,No.82001604Guizhou Provincial Higher Education Science and Technology Innovation Team,No.[2023]072+1 种基金Guizhou Province Distinguished Young Scientific and Technological Talent Program,No.YQK[2023]040Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2021]-368(all to LXiong),and Zunyi City Innovative Talent Team Training Plan,No.[2022]-2.
文摘Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.
文摘Objective:To investigate the clinical effects of parental participation in nursing under the Interaction Model of Client Health Behavior(IMCHB)model in neonatal hypoxic-ischemic encephalopathy(HIE).Methods:The First Affiliated Hospital of Gannan Medical University included 46 newborns with HIE admitted from October 2021 to October 2023 into the study population.They were divided into a control group and an observation group according to the random number table method,with the control group adopting routine nursing,and the observation group implementing parental participation in nursing under the IMCHB model.The indicators of physical,intellectual,and psychomotor development of the two groups were compared before and after nursing.Results:The physical,intellectual,and psychomotor development of the observation group was higher than that of the control group after 3 months of nursing,and the difference was statistically significant(P<0.05).Conclusion:The implementation of the IMCHB model of parental participation in the clinical care of HIE neonates can further promote their physical,intellectual,and psychomotor development.
文摘It is widely assumed that fetal ischemic brain injury during labor derives almost exclusively from severe, systemic hypoxemia with marked neonatal depression and acidemia. Severe asphyxia, however, is one of several causes of perinatal neurological injury and may not be the most common;most neonates diagnosed with hypoxic-ischemic encephalopathy do not have evidence of severe asphyxia. Sepsis, direct brain trauma, and drug or toxin exposure account for some cases, while mechanical forces of labor and delivery that increase fetal intracranial pressure sufficiently to impair brain perfusion may also contribute. Because of bony compliance and mobile suture lines, the fetal skull changes shape and redistributes cerebrospinal fluid during labor according to constraints imposed by contractions, and bony and soft tissue elements of the birth canal as the head descends. These accommodations, including the increase in intracranial pressure, are adaptive and necessary for efficient descent of the head while safeguarding cerebral blood flow. Autonomic reflexes mediated through central receptors normally provide ample protection of the brain from the considerable pressure exerted on the skull. On occasion, those forces, which are transmitted intracranially, may overcome the various adaptive anatomical, cardiovascular, metabolic, and neurological mechanisms that maintain cerebral perfusion and oxygen availability, resulting in ischemic brain injury. Accepting the notion of a potentially adverse impact of fetal head compression suggests that avoidance of excessive uterine activity and of relentless pushing without steady progress in descent may offer protection for the fetal brain during parturition. Excessive head compression should be considered in the differential diagnosis of ischemic encephalopathy.
基金supported by Guangdong Province Science Research Project,No.B30502
文摘Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'- deoxyuddine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.
基金supported by a grant from the Health and Family Planning Commission of Hebei Province of China,No.20150033a grant from the Science and Technology Research and Development Project of Handan City of Hebei Province of China,No.152810879-6
文摘Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promising neuroprotective agents.We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment.In this study,41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group(hypothermia alone for 72 hours,n = 20) and erythropoietin group(hypothermia + erythropoietin 200 IU/kg for 10 days,n = 21).Our results show that compared with the control group,serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days.However,neurodevelopmental outcome was similar between the two groups at 9 months of age.These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金supported by the CJ Martin Postdoctoral Fellowshipgrants from the National Health and Medical Research Council of Australia (1090890 and 1164954)+1 种基金the Cerebral Palsy Alliance, Harold and Cora Brennen Benevolent Trust, Health Research Council of New Zealand (17/601)the Victorian Government’s Operational Infrastructure Support Program (to RG)
文摘Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth.Multiple pathways are involved in the pathogenesis of perinatal inflammation.However,studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1.In this review,we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury.We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage,and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist,anakinra,as a safe and effective therapeutic intervention.We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment,and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.