Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WS...Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WSNs in confined underground area such as coal face and laneway, we presents an energy- efficient clustering routing protocol based on weight (ECRPW) to prolong the lifetime of networks. ECRPW takes into consideration the nodes' residual energy during the election process of cluster heads. The constraint of distance threshold is used to optimize cluster scheme. Furthermore, the protocol also sets up a routing tree based on cluster heads' weight. The results show that ECRPW had better perfor- mance in energy consumption, death ratio of node and network lifetime.展开更多
In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce ene...In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
This paper targets on energy saving and considers network responding time for backbone networks. The objective is to find idle links as many as possible which can be put into sleep mode under the situation of quality ...This paper targets on energy saving and considers network responding time for backbone networks. The objective is to find idle links as many as possible which can be put into sleep mode under the situation of quality of service(QoS)-guaranteed. This paper proposes a software defined network(SDN) based routing strategy which is especially aimed at QoS-guaranteed energy saving for backbone networks. Under SDN structure, the topology change of network can be detected directly by network controller. And network can be managed more easily and effectively. Based on the open shortest path first(OSPF) protocol, network topology can be changed as little as possible in our strategy. So, the network reconfiguring time caused by the energy saving strategy will be decreased dramatically. This makes the strategy more feasible. Then the backbone network energy optimizing problem is transformed to the maximum clique problem(MCP). And, this paper designed a routing strategy called backbone networks energy saving strategy(BNESS) for energy saving in backbone networks. Simulation result shows that our proposed strategy can save energy and QoS can be guaranteed.展开更多
The spatial diversity of distributed network demands the individual filter to accommodate the topology of interference environment. In this paper, a type of distributed adaptive beamformer is proposed to mitigate inte...The spatial diversity of distributed network demands the individual filter to accommodate the topology of interference environment. In this paper, a type of distributed adaptive beamformer is proposed to mitigate interference over coordinated antenna arrays network. The proposed approach is formulated as generalized sidelobe canceller (GSC) structure to facilitate the convex combination of neighboring nodes' weights, and then it is solved by unconstrained least mean square (LMS) algorithm due to simplicity. Numerical results show that the robustness and convergence rate of antenna arrays network can be significantly improved in strong interference scenario. And they also clearly illustrate that mixing vector is optimized adaptively and adjusted according to the spatial diversity of the distributed nodes which are placed in different power of received signals to interference ratio (SIR) environments.展开更多
In order to make full use of the radio resource of heterogeneous wireless networks(HWNs) and promote the quality of service(Qo S) of multi-homing users for video communication, a bandwidth allocation algorithm bas...In order to make full use of the radio resource of heterogeneous wireless networks(HWNs) and promote the quality of service(Qo S) of multi-homing users for video communication, a bandwidth allocation algorithm based on multi-radio access is proposed in this paper. The proposed algorithm adopts an improved distributed common radio resource management(DCRRM) model which can reduce the signaling overhead sufficiently. This scheme can be divided into two phases. In the first phase, candidate network set of each user is obtained according to the received signal strength(RSS). And the simple additive weighted(SAW) method is employed to determine the active network set. In the second phase, the utility optimization problem is formulated by linear combining of the video communication satisfaction model, cost model and energy efficiency model. And finding the optimal bandwidth allocation scheme with Lagrange multiplier method and Karush-Kuhn-Tucker(KKT) conditions. Simulation results show that the proposed algorithm promotes the network load performances and guarantees that users obtain the best joint utility under current situation.展开更多
In order to secure the source location privacy when information is sent back to the base station in wireless sensor network, we propose a novel routing strategy which routes the packets to the base station through thr...In order to secure the source location privacy when information is sent back to the base station in wireless sensor network, we propose a novel routing strategy which routes the packets to the base station through three stages: directional random routing, h-hop routing in the annular region and the shortest path routing. These stages provide two fold protections to prevent the source location from being tracked down by the adversary. The analysis and simulation results show that proposed scheme, besides providing longer safety period, can significantly reduce energy consumption compared with two baseline schemes.展开更多
Wireless sensor networks(WSNs) are emerging as essential and popular ways of providing pervasive computing environments for various applications. Unbalanced energy consumption is an inherent problem in WSNs, charact...Wireless sensor networks(WSNs) are emerging as essential and popular ways of providing pervasive computing environments for various applications. Unbalanced energy consumption is an inherent problem in WSNs, characterized by multi-hop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. In multi-hop sensor networks, information obtained by the monitoring nodes need to be routed to the sinks, the energy consumption rate per unit information transmission depends on the choice of the next hop node. In an energy-aware routing approach, most proposed algorithms aim at minimizing the total energy consumption or maximizing network lifetime. In this paper, we propose a novel energy aware hierarchical cluster-based(NEAHC) routing protocol with two goals: minimizing the total energy consumption and ensuring fairness of energy consumption between nodes. We model the relay node choosing problem as a nonlinear programming problem and use the property of convex function to find the optimal solution. We also evaluate the proposed algorithm via simulations at the end of this paper.展开更多
基金supports provided by the National Natural Science Foundation of China (No.50904070)the China Postdoctoral Science Foundation (No.20100471009)+2 种基金the National High Technology Research and Development Program of China (Nos. 2008AA062200 and2007AA01Z180)the Key Project of Jiangsu (No. BG2007012)the Science Foundation of China University of Mining and Technology (No. OC080303)
文摘Wireless sensor networks (WSNs) are important application for safety monitoring in underground coal mines, which are difficult to monitor due to natural conditions. Based on the characteristic of limited energy for WSNs in confined underground area such as coal face and laneway, we presents an energy- efficient clustering routing protocol based on weight (ECRPW) to prolong the lifetime of networks. ECRPW takes into consideration the nodes' residual energy during the election process of cluster heads. The constraint of distance threshold is used to optimize cluster scheme. Furthermore, the protocol also sets up a routing tree based on cluster heads' weight. The results show that ECRPW had better perfor- mance in energy consumption, death ratio of node and network lifetime.
基金supported by the National Natural Science Foundation of China(61002011)the National High Technology Research and Development Program of China(863 Program)(2013AA013303)+1 种基金the Fundamental Research Funds for the Central Universities(2013RC1104)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)
文摘In the cloud data centers,how to map virtual machines(VMs) on physical machines(PMs) to reduce the energy consumption is becoming one of the major issues,and the existing VM scheduling schemes are mostly to reduce energy consumption by optimizing the utilization of physical servers or network elements.However,the aggressive consolidation of these resources may lead to network performance degradation.In view of this,this paper proposes a two-stage VM scheduling scheme:(1) We propose a static VM placement scheme to minimize the number of activating PMs and network elements to reduce the energy consumption;(2) In the premise of minimizing the migration costs,we propose a dynamic VM migration scheme to minimize the maximum link utilization to improve the network performance.This scheme makes a tradeoff between energy efficiency and network performance.We design a new twostage heuristic algorithm for a solution,and the simulations show that our solution achieves good results.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
基金supported by the National High-Tech R&D Program(2015AA01A705)Beijing Municipal Commission of Education(The city’s vehicle sensing grid construction based on public transportation network)
文摘This paper targets on energy saving and considers network responding time for backbone networks. The objective is to find idle links as many as possible which can be put into sleep mode under the situation of quality of service(QoS)-guaranteed. This paper proposes a software defined network(SDN) based routing strategy which is especially aimed at QoS-guaranteed energy saving for backbone networks. Under SDN structure, the topology change of network can be detected directly by network controller. And network can be managed more easily and effectively. Based on the open shortest path first(OSPF) protocol, network topology can be changed as little as possible in our strategy. So, the network reconfiguring time caused by the energy saving strategy will be decreased dramatically. This makes the strategy more feasible. Then the backbone network energy optimizing problem is transformed to the maximum clique problem(MCP). And, this paper designed a routing strategy called backbone networks energy saving strategy(BNESS) for energy saving in backbone networks. Simulation result shows that our proposed strategy can save energy and QoS can be guaranteed.
基金supported by National Basic Research Program of China (No. 2010CB731903)
文摘The spatial diversity of distributed network demands the individual filter to accommodate the topology of interference environment. In this paper, a type of distributed adaptive beamformer is proposed to mitigate interference over coordinated antenna arrays network. The proposed approach is formulated as generalized sidelobe canceller (GSC) structure to facilitate the convex combination of neighboring nodes' weights, and then it is solved by unconstrained least mean square (LMS) algorithm due to simplicity. Numerical results show that the robustness and convergence rate of antenna arrays network can be significantly improved in strong interference scenario. And they also clearly illustrate that mixing vector is optimized adaptively and adjusted according to the spatial diversity of the distributed nodes which are placed in different power of received signals to interference ratio (SIR) environments.
基金supported by the National Natural Science Foundation of China (61571234, 61401225)the National Basic Research Program of China (2013CB329005)+1 种基金the Hi-Tech Research and Development Program of China (2014AA01A705)the Graduate Student Innovation Plan of Jiangsu Province (SJLX15_0365)
文摘In order to make full use of the radio resource of heterogeneous wireless networks(HWNs) and promote the quality of service(Qo S) of multi-homing users for video communication, a bandwidth allocation algorithm based on multi-radio access is proposed in this paper. The proposed algorithm adopts an improved distributed common radio resource management(DCRRM) model which can reduce the signaling overhead sufficiently. This scheme can be divided into two phases. In the first phase, candidate network set of each user is obtained according to the received signal strength(RSS). And the simple additive weighted(SAW) method is employed to determine the active network set. In the second phase, the utility optimization problem is formulated by linear combining of the video communication satisfaction model, cost model and energy efficiency model. And finding the optimal bandwidth allocation scheme with Lagrange multiplier method and Karush-Kuhn-Tucker(KKT) conditions. Simulation results show that the proposed algorithm promotes the network load performances and guarantees that users obtain the best joint utility under current situation.
基金Supported by the National Natural Science Foundation of China(61170065)the Natural Science Foundation of Jiangsu Province(BK20130882)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(NY214118)
文摘In order to secure the source location privacy when information is sent back to the base station in wireless sensor network, we propose a novel routing strategy which routes the packets to the base station through three stages: directional random routing, h-hop routing in the annular region and the shortest path routing. These stages provide two fold protections to prevent the source location from being tracked down by the adversary. The analysis and simulation results show that proposed scheme, besides providing longer safety period, can significantly reduce energy consumption compared with two baseline schemes.
基金supported by the National Youth Science Fund Project(61501052,61501047)the Fundamental Research Funds for the Central Universities of China(2015RC05)
文摘Wireless sensor networks(WSNs) are emerging as essential and popular ways of providing pervasive computing environments for various applications. Unbalanced energy consumption is an inherent problem in WSNs, characterized by multi-hop routing and a many-to-one traffic pattern. This uneven energy dissipation can significantly reduce network lifetime. In multi-hop sensor networks, information obtained by the monitoring nodes need to be routed to the sinks, the energy consumption rate per unit information transmission depends on the choice of the next hop node. In an energy-aware routing approach, most proposed algorithms aim at minimizing the total energy consumption or maximizing network lifetime. In this paper, we propose a novel energy aware hierarchical cluster-based(NEAHC) routing protocol with two goals: minimizing the total energy consumption and ensuring fairness of energy consumption between nodes. We model the relay node choosing problem as a nonlinear programming problem and use the property of convex function to find the optimal solution. We also evaluate the proposed algorithm via simulations at the end of this paper.