Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th...In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.展开更多
Neural architecture search(NAS)has become increasingly popular in the deep learning community recently,mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the ...Neural architecture search(NAS)has become increasingly popular in the deep learning community recently,mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the success of deep neural networks(DNNs).However,NAS is still laborious and time-consuming because a large number of performance estimations are required during the search process of NAS,and training DNNs is computationally intensive.To solve this major limitation of NAS,improving the computational efficiency is essential in the design of NAS.However,a systematic overview of computationally efficient NAS(CE-NAS)methods still lacks.To fill this gap,we provide a comprehensive survey of the state-of-the-art on CE-NAS by categorizing the existing work into proxy-based and surrogate-assisted NAS methods,together with a thorough discussion of their design principles and a quantitative comparison of their performances and computational complexities.The remaining challenges and open research questions are also discussed,and promising research topics in this emerging field are suggested.展开更多
AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the...AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the inefficient work that occurs while repeating this process whenever machine learning is applied.In particular,research has been conducted for a long time on technologies that can effectively develop high-quality models by minimizing the intervention of model developers in the process from data preprocessing to algorithm selection and tuning.In this semantic review research,we summarize the data processing requirements for AutoML approaches and provide a detailed explanation.We place greater emphasis on neural architecture search(NAS)as it currently represents a highly popular sub-topic within the field of AutoML.NAS methods use machine learning algorithms to search through a large space of possible architectures and find the one that performs best on a given task.We provide a summary of the performance achieved by representative NAS algorithms on the CIFAR-10,CIFAR-100,ImageNet and wellknown benchmark datasets.Additionally,we delve into several noteworthy research directions in NAS methods including one/two-stage NAS,one-shot NAS and joint hyperparameter with architecture optimization.We discussed how the search space size and complexity in NAS can vary depending on the specific problem being addressed.To conclude,we examine several open problems(SOTA problems)within current AutoML methods that assure further investigation in future research.展开更多
Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puti...Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets.展开更多
Palmprint recognition and palm vein recognition are two emerging biometrics technologies.In the past two decades,many traditional methods have been proposed for palmprint recognition and palm vein recognition and have...Palmprint recognition and palm vein recognition are two emerging biometrics technologies.In the past two decades,many traditional methods have been proposed for palmprint recognition and palm vein recognition and have achieved impressive results.In recent years,in the field of artificial intelligence,deep learning has gradually become the mainstream recognition technology because of its excellent recognition performance.Some researchers have tried to use convolutional neural networks(CNNs)for palmprint recognition and palm vein recognition.However,the architectures of these CNNs have mostly been developed manually by human experts,which is a time-consuming and error-prone process.In order to overcome some shortcomings of manually designed CNN,neural architecture search(NAS)technology has become an important research direction of deep learning.The significance of NAS is to solve the deep learning model's parameter adjustment problem,which is a cross-study combining optimization and machine learning.NAS technology represents the future development direction of deep learning.However,up to now,NAS technology has not been well studied for palmprint recognition and palm vein recognition.In this paper,in order to investigate the problem of NAS-based 2D and 3D palmprint recognition and palm vein recognition in-depth,we conduct a performance evaluation of twenty representative NAS methods on five 2D palmprint databases,two palm vein databases,and one 3D palmprint database.Experimental results show that some NAS methods can achieve promising recognition results.Remarkably,among different evaluated NAS methods,Proxyless NAS achieves the best recognition performance.展开更多
Human pose estimation from image and video is a key task in many multimedia applications.Previous methods achieve great performance but rarely take efficiency into consideration,which makes it difficult to implement t...Human pose estimation from image and video is a key task in many multimedia applications.Previous methods achieve great performance but rarely take efficiency into consideration,which makes it difficult to implement the networks on lightweight devices.Nowadays,real-time multimedia applications call for more efficient models for better interaction.Moreover,most deep neural networks for pose estimation directly reuse networks designed for image classification as the backbone,which are not optimized for the pose estimation task.In this paper,we propose an efficient framework for human pose estimation with two parts,an efficient backbone and an efficient head.By implementing a differentiable neural architecture search method,we customize the backbone network design for pose estimation,and reduce computational cost with negligible accuracy degradation.For the efficient head,we slim the transposed convolutions and propose a spatial information correction module to promote the performance of the final prediction.In experiments,we evaluate our networks on the MPII and COCO datasets.Our smallest model requires only0.65 GFLOPs with 88.1%PCKh@0.5 on MPII and our large model needs only 2 GFLOPs while its accuracy is competitive with the state-of-the-art large model,HRNet,which takes 9.5 GFLOPs.展开更多
In academia and industries,graph neural networks(GNNs)have emerged as a powerful approach to graph data processing ranging from node classification and link prediction tasks to graph clustering tasks.GNN models are us...In academia and industries,graph neural networks(GNNs)have emerged as a powerful approach to graph data processing ranging from node classification and link prediction tasks to graph clustering tasks.GNN models are usually handcrafted.However,building handcrafted GNN models is difficult and requires expert experience because GNN model components are complex and sensitive to variations.The complexity of GNN model components has brought significant challenges to the existing efficiencies of GNNs.Hence,many studies have focused on building automated machine learning frameworks to search for the best GNN models for targeted tasks.In this work,we provide a comprehensive review of automatic GNN model building frameworks to summarize the status of the field to facilitate future progress.We categorize the components of automatic GNN model building frameworks into three dimensions according to the challenges of building them.After reviewing the representative works for each dimension,we discuss promising future research directions in this rapidly growing field.展开更多
Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have ...Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1.展开更多
It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively dif...It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance.展开更多
In most popular public accessible cryptocurrency systems,the mining pool plays a key role because mining cryptocurrency with the mining pool turns the non-profitable situation into profitable for individual miners.In ...In most popular public accessible cryptocurrency systems,the mining pool plays a key role because mining cryptocurrency with the mining pool turns the non-profitable situation into profitable for individual miners.In many recent novel blockchain consensuses,the deep learning training procedure becomes the task for miners to prove their workload.Thus,the computation power of miners will not purely be spent on the hash puzzle.In this way,the hardware and energy will support the blockchain service and deep learning training simultaneously.While the incentive of miners is to earn tokens,individual miners are motivated to join mining pools to become more competitive.In this paper,we are the first to demonstrate a mining pool solution for novel consensuses based on deep learning.The mining pool manager partitions the full searching space into subspaces,and all miners are scheduled to collaborate on the Neural architecture search(NAS)tasks in the assigned subspace.Experiments demonstrate that the performance of this type of mining pool is more competitive than that of an individual miner.Due to the uncertainty of miners'behaviors,the mining pool manager checks the standard deviation of the performance of high reward miners and prepares backup miners to ensure completion of the tasks of high reward miners.展开更多
Reinforcement learning is about learning agent models that make the best sequential decisions in unknown environments.In an unknown environment,the agent needs to explore the environment while exploiting the collected...Reinforcement learning is about learning agent models that make the best sequential decisions in unknown environments.In an unknown environment,the agent needs to explore the environment while exploiting the collected information,which usually forms a sophisticated problem to solve.Derivative-free optimization,meanwhile,is capable of solving sophisticated problems.It commonly uses a sampling-andupdating framework to iteratively improve the solution,where exploration and exploitation are also needed to be well balanced.Therefore,derivative-free optimization deals with a similar core issue as reinforcement learning,and has been introduced in reinforcement learning approaches,under the names of learning classifier systems and neuroevolution/evolutionary reinforcement learning.Although such methods have been developed for decades,recently,derivative-free reinforcement learning exhibits attracting increasing attention.However,recent survey on this topic is still lacking.In this article,we summarize methods of derivative-free reinforcement learning to date,and organize the methods in aspects including parameter updating,model selection,exploration,and parallel/distributed methods.Moreover,we discuss some current limitations and possible future directions,hoping that this article could bring more attentions to this topic and serve as a catalyst for developing novel and efficient approaches.展开更多
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
文摘In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.
基金This work was supported by a Ulucu PhD studentshipY.Jin is funded by an Alexander von Humboldt Professorship for Artificial Intelligence endowed by the German Federal Ministry of Education and Research.
文摘Neural architecture search(NAS)has become increasingly popular in the deep learning community recently,mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the success of deep neural networks(DNNs).However,NAS is still laborious and time-consuming because a large number of performance estimations are required during the search process of NAS,and training DNNs is computationally intensive.To solve this major limitation of NAS,improving the computational efficiency is essential in the design of NAS.However,a systematic overview of computationally efficient NAS(CE-NAS)methods still lacks.To fill this gap,we provide a comprehensive survey of the state-of-the-art on CE-NAS by categorizing the existing work into proxy-based and surrogate-assisted NAS methods,together with a thorough discussion of their design principles and a quantitative comparison of their performances and computational complexities.The remaining challenges and open research questions are also discussed,and promising research topics in this emerging field are suggested.
文摘AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the inefficient work that occurs while repeating this process whenever machine learning is applied.In particular,research has been conducted for a long time on technologies that can effectively develop high-quality models by minimizing the intervention of model developers in the process from data preprocessing to algorithm selection and tuning.In this semantic review research,we summarize the data processing requirements for AutoML approaches and provide a detailed explanation.We place greater emphasis on neural architecture search(NAS)as it currently represents a highly popular sub-topic within the field of AutoML.NAS methods use machine learning algorithms to search through a large space of possible architectures and find the one that performs best on a given task.We provide a summary of the performance achieved by representative NAS algorithms on the CIFAR-10,CIFAR-100,ImageNet and wellknown benchmark datasets.Additionally,we delve into several noteworthy research directions in NAS methods including one/two-stage NAS,one-shot NAS and joint hyperparameter with architecture optimization.We discussed how the search space size and complexity in NAS can vary depending on the specific problem being addressed.To conclude,we examine several open problems(SOTA problems)within current AutoML methods that assure further investigation in future research.
基金supported by the China Postdoctoral Science Foundation Funded Project(Grant Nos.2017M613054 and 2017M613053)the Shaanxi Postdoctoral Science Foundation Funded Project(Grant No.2017BSHYDZZ33)the National Science Foundation of China(Grant No.62102239).
文摘Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets.
基金supported by National Science Foundation of China(Nos.62076086,61673157,61972129,61972127 and 61702154)Key Research and Development Program in Anhui Province(Nos.202004d07020008 and 201904d07020010)。
文摘Palmprint recognition and palm vein recognition are two emerging biometrics technologies.In the past two decades,many traditional methods have been proposed for palmprint recognition and palm vein recognition and have achieved impressive results.In recent years,in the field of artificial intelligence,deep learning has gradually become the mainstream recognition technology because of its excellent recognition performance.Some researchers have tried to use convolutional neural networks(CNNs)for palmprint recognition and palm vein recognition.However,the architectures of these CNNs have mostly been developed manually by human experts,which is a time-consuming and error-prone process.In order to overcome some shortcomings of manually designed CNN,neural architecture search(NAS)technology has become an important research direction of deep learning.The significance of NAS is to solve the deep learning model's parameter adjustment problem,which is a cross-study combining optimization and machine learning.NAS technology represents the future development direction of deep learning.However,up to now,NAS technology has not been well studied for palmprint recognition and palm vein recognition.In this paper,in order to investigate the problem of NAS-based 2D and 3D palmprint recognition and palm vein recognition in-depth,we conduct a performance evaluation of twenty representative NAS methods on five 2D palmprint databases,two palm vein databases,and one 3D palmprint database.Experimental results show that some NAS methods can achieve promising recognition results.Remarkably,among different evaluated NAS methods,Proxyless NAS achieves the best recognition performance.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.61733007 and 61876212)Zhejiang Lab(No.2019NB0AB02)。
文摘Human pose estimation from image and video is a key task in many multimedia applications.Previous methods achieve great performance but rarely take efficiency into consideration,which makes it difficult to implement the networks on lightweight devices.Nowadays,real-time multimedia applications call for more efficient models for better interaction.Moreover,most deep neural networks for pose estimation directly reuse networks designed for image classification as the backbone,which are not optimized for the pose estimation task.In this paper,we propose an efficient framework for human pose estimation with two parts,an efficient backbone and an efficient head.By implementing a differentiable neural architecture search method,we customize the backbone network design for pose estimation,and reduce computational cost with negligible accuracy degradation.For the efficient head,we slim the transposed convolutions and propose a spatial information correction module to promote the performance of the final prediction.In experiments,we evaluate our networks on the MPII and COCO datasets.Our smallest model requires only0.65 GFLOPs with 88.1%PCKh@0.5 on MPII and our large model needs only 2 GFLOPs while its accuracy is competitive with the state-of-the-art large model,HRNet,which takes 9.5 GFLOPs.
基金supported by the National Natural Science Foundation of China(No.61873288)the CAAIHuawei Mind Spore Open Fund**。
文摘In academia and industries,graph neural networks(GNNs)have emerged as a powerful approach to graph data processing ranging from node classification and link prediction tasks to graph clustering tasks.GNN models are usually handcrafted.However,building handcrafted GNN models is difficult and requires expert experience because GNN model components are complex and sensitive to variations.The complexity of GNN model components has brought significant challenges to the existing efficiencies of GNNs.Hence,many studies have focused on building automated machine learning frameworks to search for the best GNN models for targeted tasks.In this work,we provide a comprehensive review of automatic GNN model building frameworks to summarize the status of the field to facilitate future progress.We categorize the components of automatic GNN model building frameworks into three dimensions according to the challenges of building them.After reviewing the representative works for each dimension,we discuss promising future research directions in this rapidly growing field.
基金supported by the Liaoning Province Applied Basic Research Program Project of China(Grant:2023JH2/101300065)the Liaoning Province Science and Technology Plan Joint Fund(2023-MSLH-221).
文摘Deep learning has emerged in many practical applications,such as image classification,fault diagnosis,and object detection.More recently,convolutional neural networks(CNNs),representative models of deep learning,have been used to solve fault detection.However,the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error.For this reason,an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection.YOLOv8 is a CNN-backed object detection model.Specifically,to reduce the parameter count,we first design an improved FasterNet module based on the Partial Convolution(PConv)operator.Then,to enhance convergence performance,we improve the loss function based on the efficient complete intersection over the union.Based on this,a flexible variable-length encoding is proposed,and the corresponding reproduction operators are designed.Related experimental results confirmthat the proposed approach can achieve better fault detection results and improve by 2.6%in mean precision at 50(mAP50)compared to the existing methods.Additionally,compared to training with the YOLOv8n model,the YOLOBFE model reduces the training parameters by 933,937 and decreases the GFLOPS(Giga Floating Point Operations Per Second)by 1.1.
基金This research was funded by the National Natural Science Foundation of China(grant number:61671470)the Key Research and Development Program of China(grant number:2016YFC0802900).
文摘It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance.
文摘In most popular public accessible cryptocurrency systems,the mining pool plays a key role because mining cryptocurrency with the mining pool turns the non-profitable situation into profitable for individual miners.In many recent novel blockchain consensuses,the deep learning training procedure becomes the task for miners to prove their workload.Thus,the computation power of miners will not purely be spent on the hash puzzle.In this way,the hardware and energy will support the blockchain service and deep learning training simultaneously.While the incentive of miners is to earn tokens,individual miners are motivated to join mining pools to become more competitive.In this paper,we are the first to demonstrate a mining pool solution for novel consensuses based on deep learning.The mining pool manager partitions the full searching space into subspaces,and all miners are scheduled to collaborate on the Neural architecture search(NAS)tasks in the assigned subspace.Experiments demonstrate that the performance of this type of mining pool is more competitive than that of an individual miner.Due to the uncertainty of miners'behaviors,the mining pool manager checks the standard deviation of the performance of high reward miners and prepares backup miners to ensure completion of the tasks of high reward miners.
基金This work was supported by the Program A for Outstanding PhD Candidate of Nanjing University,National Science Foundation of China(61876077)Jiangsu Science Foundation(BK20170013)Collaborative Innovation Center of Novel Software Technology and Industrialization.
文摘Reinforcement learning is about learning agent models that make the best sequential decisions in unknown environments.In an unknown environment,the agent needs to explore the environment while exploiting the collected information,which usually forms a sophisticated problem to solve.Derivative-free optimization,meanwhile,is capable of solving sophisticated problems.It commonly uses a sampling-andupdating framework to iteratively improve the solution,where exploration and exploitation are also needed to be well balanced.Therefore,derivative-free optimization deals with a similar core issue as reinforcement learning,and has been introduced in reinforcement learning approaches,under the names of learning classifier systems and neuroevolution/evolutionary reinforcement learning.Although such methods have been developed for decades,recently,derivative-free reinforcement learning exhibits attracting increasing attention.However,recent survey on this topic is still lacking.In this article,we summarize methods of derivative-free reinforcement learning to date,and organize the methods in aspects including parameter updating,model selection,exploration,and parallel/distributed methods.Moreover,we discuss some current limitations and possible future directions,hoping that this article could bring more attentions to this topic and serve as a catalyst for developing novel and efficient approaches.