期刊文献+
共找到461篇文章
< 1 2 24 >
每页显示 20 50 100
Exploiting fly models to investigate rare human neurological disorders
1
作者 Tomomi Tanaka Hyung-Lok Chung 《Neural Regeneration Research》 SCIE CAS 2025年第1期21-28,共8页
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio... Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases. 展开更多
关键词 ACOX1 Drosophila melanogaster GLIA lipid metabolism model organisms NEUROINFLAMMATION neurologic disorders NEURON rare disease VLCFA
下载PDF
Could mammalian inorganic polyphosphate be a crucial signaling molecule in neurological disorders?
2
作者 Renata Torres Da Costa Maria E.Solesio 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期701-702,共2页
Since the early stages of life on earth,cellular metabolism has evolved to adapt to fluctuations in nutrient and oxygen availability.In this context,mammals,which are probably the organisms that show one of the highes... Since the early stages of life on earth,cellular metabolism has evolved to adapt to fluctuations in nutrient and oxygen availability.In this context,mammals,which are probably the organisms that show one of the highest levels of metabolic complexity,have developed an elegant system that uses constant and rechargeable energy sources of modulate their metabolism.This homeostasis is especially important in the central nervous system,as neurons and other cells in the brain are highly susceptible to fluctuations in nutrients and oxygen availability. 展开更多
关键词 METABOLISM HOMEOSTASIS neurologicAL
下载PDF
Using microglia-derived extracellular vesicles to capture diversity of microglial activation phenotypes following neurological injury
3
作者 Austyn D.Roseborough Nikita Ollen-Bittle Shawn NWhitehead 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1633-1634,共2页
Microglia are one of the three glial cell populations in the central nervous system(CNS),along with astrocytes and oligodendrocytes.While microglia are unique among brain cells due to their hematologic origin and perf... Microglia are one of the three glial cell populations in the central nervous system(CNS),along with astrocytes and oligodendrocytes.While microglia are unique among brain cells due to their hematologic origin and perform immune functions similar to peripheral macrophages,they are not simply macrophages of the CNS. 展开更多
关键词 neurologicAL cytes activation
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings
4
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
Subarachnoid hemorrhage misdiagnosed as acute coronary syndrome leading to catastrophic neurologic injury: A case report
5
作者 Jun-Ming Lin Xiao-Jun Yuan +2 位作者 Guang Li Xin-Rong Gan Wen-Hua Xu 《World Journal of Clinical Cases》 SCIE 2024年第1期148-156,共9页
BACKGROUND Elevated levels of cardiac troponin and abnormal electrocardiogram changes are the primary basis for clinical diagnosis of acute coronary syndrome(ACS).Troponin levels in ACS patients can often be more than... BACKGROUND Elevated levels of cardiac troponin and abnormal electrocardiogram changes are the primary basis for clinical diagnosis of acute coronary syndrome(ACS).Troponin levels in ACS patients can often be more than 50 times the upper reference limit.Some patients with subarachnoid hemorrhage(SAH)also show electrocardiogram abnormalities,myocardial damage,and elevated cardiac biomarkers.Unlike ACS patients,patients with SAH only have a slight increase in troponin,and the use of anticoagulants or antiplatelet drugs is prohibited.Because of the opposite treatment modalities,it is essential for clinicians to distinguish between SAH and ACS.CASE SUMMARY A 56-year-old female patient was admitted to the emergency department at night with a sudden onset of severe back pain.The final diagnosis was intraspinal hematoma in the thoracic spine.We performed an emergency thoracic spinal canal hematoma evacuation procedure with the assistance of a microscope.Intraoperatively,diffuse hematoma formation was found in the T7-T10 spinal canal,and no obvious spinal vascular malformation changes were observed.Postoperative head and spinal magnetic resonance imaging(MRI)showed a small amount of SAH in the skull,no obvious abnormalities in the cervical and thoracic spinal canals,and no abnormal signals in the lumbar spinal canal.Thoracoab-dominal aorta computed tomography angiography showed no vascular malfor-mation.Postoperative motor system examination showed Medical Research Council Scale grade 1/5 strength in both lower extremities,and the patient experienced decreased sensation below the T12 rib margin and reported a Visual Analog Scale score of 3.CONCLUSION Extremely elevated troponin levels(more than 50 times the normal range)are not unique to coronary artery disease.SAH can also result in extremely high troponin levels,and antiplatelet drugs are contraindicated in such cases.Emergency MRI can help in the early differential diagnosis,as a misdiagnosis of ACS can lead to catastrophic neurological damage in patients with spontaneous spinal SAH. 展开更多
关键词 Acute coronary syndrome Spontaneous spinal subdural hematoma MISDIAGNOSIS Catastrophic neurological injury Case report
下载PDF
Neurological Manifestations of Vitamin B12 Deficiency: About a Case
6
作者 Emmanuel Yangatimbi Duval Lewis Grenaba +4 位作者 Josué Pierre Kinima Larissa Kpengougna Jacqueline Tchebemou Caprice Vivien Ndouellet Pascal Mbelesso 《Neuroscience & Medicine》 2024年第1期51-54,共4页
The authors report a case of deficient sensory neuropathy secondary to vitamin B12 deficiency, diagnosed in the neurology department of the Sino-Central African Friendship University Hospital in Bangui. The diagnosis ... The authors report a case of deficient sensory neuropathy secondary to vitamin B12 deficiency, diagnosed in the neurology department of the Sino-Central African Friendship University Hospital in Bangui. The diagnosis was made possible by electroneuromyography which showed subclinical neurological damage associated with hematological damage (anemia). Through this observation, we recall the diagnostic criteria of the disease in a context of difficult medical practice. . 展开更多
关键词 neurological Manifestations Vitamins B12 Central African Republic
下载PDF
Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins 被引量:2
7
作者 Fang-Fang Qian You-Hua He +3 位作者 Xiao-Hui Du Hua-Xiang Lu Ren-Hong He Jian-Zhong Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期368-374,共7页
Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic ... Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury. 展开更多
关键词 brain-derived neurotrophic factor moderate traumatic brain injury neurological dysfunction neurological improvement N-methyl-D-aspartic acid receptor repetitive transcranial magnetic stimulation synaptic plasticity SYNAPTOPHYSIN traumatic brain injury TRKB
下载PDF
Neuro faces of beneficial T cells:essential in brain,impaired in aging and neurological diseases,and activated functionally by neurotransmitters and neuropeptides 被引量:4
8
作者 Mia Levite 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1165-1178,共14页
T cells are essential for a healthy life,performing continuously:immune surveillance,recognition,protection,activation,suppression,assistance,eradication,secretion,adhesion,migration,homing,communications,and addition... T cells are essential for a healthy life,performing continuously:immune surveillance,recognition,protection,activation,suppression,assistance,eradication,secretion,adhesion,migration,homing,communications,and additional tasks.This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain.First,normal beneficial T cells are essential for normal healthy brain functions:cognition,spatial learning,memory,adult neurogenesis,and neuroprotection.T cells decrease secondary neuronal degeneration,increase neuronal survival after central nervous system(CNS) injury,and limit CNS inflammation and damage upon injury and infection.Second,while pathogenic T cells contribute to CNS disorders,recent studies,mostly in animal models,show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in seve ral neuroinflammatory and neurodegenerative diseases.These include M ultiple Sclerosis(MS),Alzheimer’s disease,Parkinson’s disease,Amyotrophic Lateral Sclerosis(ALS),stro ke,CNS trauma,chronic pain,and others.Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective,neuro regenerative and immunomodulato ry effects.Third,normal beneficial T cells are abnormal,impaired,and dysfunctional in aging and multiple neurological diseases.Different T cell impairments are evident in aging,brain tumors(mainly Glioblastoma),seve re viral infections(including COVID-19),chro nic stress,major depression,schizophrenia,Parkinson’s disease,Alzheimer’s disease,ALS,MS,stro ke,and other neuro-pathologies.The main detrimental mechanisms that impair T cell function are activation-induced cell death,exhaustion,senescence,and impaired T cell stemness.Fo urth,several physiological neurotransmitters and neuro peptides induce by themselves multiple direct,potent,beneficial,and therapeutically-relevant effects on normal human T cells,via their receptors in T cells.This scientific field is called "Nerve-Driven Immunity".The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naive normal human T cells are:dopamine,glutamate,GnRH-Ⅱ,neuropeptide Y,calcitonin gene-related peptide,and somatostatin.Fifth, "Personalized Adoptive Neuro-Immunotherapy".This is a novel unique cellular immunotherapy,based on the "Nerve-Driven Immunity" findings,which was recently designed and patented for safe and repeated rejuvenation,activation,and improvement of impaired and dysfunctional T cells of any person in need,by ex vivo exposure of the person’s T cells to neurotransmitters and neuropeptides.Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis,and subsequent ex vivo in vivo personalized adoptive therapy,tailo red according to the diagnosis.The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans,pending validation of safety and efficacy in clinical trials,especially in brain tumors,chronic infectious diseases,and aging,in which T cells are exhausted and/or senescent and dysfunctional. 展开更多
关键词 AGING dopamine GLUTAMATE nerve-driven immunity neurological diseases NEUROPEPTIDES NEUROTRANSMITTERS Personalized Adoptive Neuro-Immunotherapy T cells
下载PDF
Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury 被引量:2
9
作者 Yu Kang Rui Zhu +4 位作者 Shuang Li Kun-Peng Qin Hao Tang Wen-Shan Shan Zong-Sheng Yin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期881-888,共8页
Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotectiv... Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotective effects of erythropoietin on spinal cord injury has not been examined.In this study,we established rat models of spinal cord injury by modified Allen’s method and intraperitoneally administered 1000 and 5000 IU/kg erythropoietin once a week for 2 successive weeks.Both low and high doses of erythropoietin promoted recovery of hindlimb function,and the high dose of erythropoietin led to better outcome.High dose of erythropoietin exhibited a stronger suppressive effect on ferroptosis relative to the low dose of erythropoietin.The effects of erythropoietin on inhibiting ferroptosis-related protein expression and restoring mitochondrial morphology were similar to those of Fer-1(a ferroptosis suppressor),and the effects of erythropoietin were largely diminished by RSL3(ferroptosis activator).In vitro experiments showed that erythropoietin inhibited RSL3-induced ferroptosis in PC12 cells and increased the expression of xCT and Gpx4.This suggests that xCT and Gpx4 are involved in the neuroprotective effects of erythropoietin on spinal cord injury.Our findings reveal the underlying anti-ferroptosis role of erythropoietin and provide a potential therapeutic strategy for treating spinal cord injury. 展开更多
关键词 ERYTHROPOIETIN ferroptosis Gpx4 iron overload lipid peroxidation mechanism neurological function recovery spinal cord injury spinal neuron xCT
下载PDF
Repurposing niclosamide for the treatment of neurological disorders 被引量:1
10
作者 Savina Apolloni Nadia D’Ambrosi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2705-2706,共2页
Neurological disorders are still one of the major causes of death,and the vast need to find efficacious therapy is nowadays an essential goal of the scientific community.For Parkinson's disease(PD),amyotrophic lat... Neurological disorders are still one of the major causes of death,and the vast need to find efficacious therapy is nowadays an essential goal of the scientific community.For Parkinson's disease(PD),amyotrophic lateral sclerosis(ALS),spinal cord injury,and intracerebral hemorrhage. 展开更多
关键词 DISORDERS DEATH neurologicAL
下载PDF
miR-181b promotes angiogenesis and neurological function recovery after ischemic stroke 被引量:1
11
作者 Li-Xia Xue Lin-Yuan Shu +6 位作者 Hong-Mei Wang Kai-Li Lu Li-Gang Huang Jing-Yan Xiang Zhi Geng Yu-Wu Zhao Hao Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1983-1989,共7页
Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promo... Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promote angiogenesis in hypoxia and traumatic brain injury model,while its effect on ischemic stroke remains elusive.In this study,we found that overexpression of miR-181b in brain microvascular endothelial cells subjected to oxygen-glucose deprivation in vitro restored cell prolife ration and enhanced angiogenesis.In rat models of focal cerebral ischemia,ove rexpression of miR-181b reduced infarction volume,promoted angiogenesis in ischemic penumbra,and improved neurological function.We further investigated the molecular mechanism by which miR-181b participates in angiogenesis after ischemic stroke and found that miR-181b directly bound to the 3’-UTR of phosphatase and tensin homolog(PTEN) mRNA to induce PTEN downregulation,leading to activation of the protein kinase B(Akt) pathway,upregulated expression of vascular endothelial growth facto rs,down-regulated expression of endostatin,and promoted angiogenesis.Taken togethe r,these results indicate that exogenous miR-181b exhibits neuroprotective effects on ischemic stro ke through activating the PTEN/Akt signal pathway and promoting angiogenesis. 展开更多
关键词 Akt ANGIOGENESIS ENDOSTATIN ischemic stroke middle cerebral artery occlusion miR-181b neurological function recovery oxygen-glucose deprivation PTEN vascular endothelial growth factor
下载PDF
Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases 被引量:1
12
作者 Chao Yang Xin-Ya Du Wen Luo 《World Journal of Stem Cells》 SCIE 2023年第4期136-149,共14页
Since dental pulp stem cells(DPSCs)were first reported,six types of dental SCs(DSCs)have been isolated and identified.DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation pote... Since dental pulp stem cells(DPSCs)were first reported,six types of dental SCs(DSCs)have been isolated and identified.DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuroectodermal features.As a member of DSCs,dental follicle SCs(DFSCs)are the only cell type obtained at the early developing stage of the tooth prior to eruption.Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues,which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications.Furthermore,DFSCs exhibit a significantly higher cell proliferation rate,higher colony-formation capacity,and more primitive and better anti-inflammatory effects than other DSCs.In this respect,DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases,with natural advantages based on their origin.Lastly,cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications.This review summarizes and comments on the properties,application potential,and clinical transformation value of DFSCs,thereby inspiring novel perspectives in the future treatment of oral and neurological diseases. 展开更多
关键词 Dental follicle stem cells Oral disease neurological disease Tissue engineering REGENERATION IMMUNOREGULATION
下载PDF
The ferroptosis activity is associated with neurological recovery following chronic compressive spinal cord injury 被引量:1
13
作者 Zhengran Yu Xing Cheng +2 位作者 Wenxu Pan Cheng Yu Yang Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2482-2488,共7页
Chronic compressive spinal cord injury in compressive cervical myelopathy conditions can lead to rapid neurological deterioration in the early phase,followed by partial self-recovery,and ultimately an equilibrium stat... Chronic compressive spinal cord injury in compressive cervical myelopathy conditions can lead to rapid neurological deterioration in the early phase,followed by partial self-recovery,and ultimately an equilibrium state of neurological dysfunction.Ferroptosis is a crucial pathological process in many neurodegenerative diseases;however,its role in chro nic compressive spinal cord injury remains unclear.In this study,we established a chronic compressive spinal cord injury rat model,which displayed its most severe behavioral and electrophysiological dysfunction at 4 wee ks and partial recovery at 8 weeks after compression.Bulk RNA sequencing data identified enriched functional pathways,including ferroptosis,presynapse,and postsynaptic membrane activity at both 4 and 8 wee ks following chro nic compressive spinal co rd injury.Tra nsmission electron microscopy and malondialdehyde quantification assay confirmed that ferroptosis activity peaked at 4 weeks and was attenuated at 8 weeks after chronic compression.Ferro ptosis activity was negatively correlated with behavioral score.Immunofluorescence,quantitative polymerase chain reaction,and western blotting showed that expression of the anti-ferroptosis molecules,glutathione peroxidase 4(GPX4) and MAF BZIP transcription factor G(MafG),in neuro ns was suppressed at 4 weeks and upregulated at 8 weeks following spinal co rd compression.There was a positive correlation between the expression of these two molecules,suggesting that they may work together to contribute to functional recovery following chronic compressive spinal cord injury.In conclusion,our study determined the genome-wide expression profile and fe rroptosis activity of a consistently compressed spinal cord at different time points.The results showed that anti-fe rroptosis genes,specifically GPX4 and MafG,may be involved in spontaneous neurological recovery at 8 weeks of chronic compressive spinal cord injury.These findings contribute to a better understanding of the mechanisms underlying chronic compressive spinal cord injury and may help identify new therapeutic targets for compressive cervical myelopathy. 展开更多
关键词 chronic spinal cord compression compressive cervical myelopathy ferroptosis genome-wide transcriptome glutathione peroxidase 4(GPX4) MAF BZIP transcription factor G(MafG) neurological function
下载PDF
Drug utilization evaluation of medications used in the management of neurological disorders 被引量:1
14
作者 Meghana Upadhya Nivya Jimmy +8 位作者 Jesslyn Maria Jaison Shahal Sidheque Harsha Sundaramurthy Nemichandra S c Shasthara Paneyala Madhan Ramesh Jehath Syed Nikita Pal Sri Harsha Chalasani 《Global Health Journal》 2023年第3期153-156,共4页
Background and object:The burden of neurological disorders in India is expected to increase due to the rapid demographic and epidemiological transition,with irrational drug use,which is also a global concern.Thus,drug... Background and object:The burden of neurological disorders in India is expected to increase due to the rapid demographic and epidemiological transition,with irrational drug use,which is also a global concern.Thus,drug utilization evaluation is designed to ensure appropriate medicine use within the healthcare settings.The aim of the study was to assess the rate and pattern of drug utilization in the management of neurological disorders.Materials and methods:A hospital-based cross-sectional drug utilization evaluation study on neurological drugs was carried out at the Department of Neurology over a span of six months.All legible prescriptions consisting neurological medications irrespective of patient's gender,aged≥18 years were included for the study.The World Health Organization(WHO)core drug use indicators were used to assess the drug prescribing and utilization patterns.Results:A total of 310 prescriptions were reviewed,where male predominance was found to be 56.45%.Out of 310 prescriptions,drugs belonging to 26 neurological classes were prescribed for the management of various neurological disorders.The majority of patients were diagnosed with epilepsy and the most prescribed drugs per patient were phenytoin(14.8%)and valproic acid(6.45%).By following the WHO core drug prescribing indicators,65.47%of drugs prescribed from the India National List of Essential Medicines,2022,followed by 29.83%of drugs prescribed in generic name and 10.86%of prescriptions including injections.Conclusion:The study findings showed that the prescribing pattern in the Department of Neurology was in accordance with the WHO core prescribing indicators.But,the extent of polypharmacy prescriptions was very high.Therefore,interventions are very necessary to promote rational drug prescribing patterns and thus clinical pharmacists can contribute to assess and review the drug utilization pattern to optimize the drug therapy and improvement in patient safety. 展开更多
关键词 Drug utilization evaluation neurological disorders Essential medication list Drug-related problems Patient safety
下载PDF
Neurologic orphan diseases:Emerging innovations and role for genetic treatments 被引量:1
15
作者 Ivelina P Kioutchoukova Devon T Foster +5 位作者 Rajvi N Thakkar Marco A Foreman Brandon J Burgess Rebecca M Toms Eduardo E Molina Valero Brandon Lucke-Wold 《World Journal of Experimental Medicine》 2023年第4期59-74,共16页
Orphan diseases are rare diseases that affect less than 200000 individuals within the United States.Most orphan diseases are of neurologic and genetic origin.With the current advances in technology,more funding has be... Orphan diseases are rare diseases that affect less than 200000 individuals within the United States.Most orphan diseases are of neurologic and genetic origin.With the current advances in technology,more funding has been devoted to developing therapeutic agents for patients with these conditions.In our review,we highlight emerging options for patients with neurologic orphan diseases,specifically including diseases resulting in muscular deterioration,epilepsy,seizures,neurodegenerative movement disorders,inhibited cognitive development,neuron deterioration,and tumors.After extensive literature review,gene therapy offers a promising route for the treatment of neurologic orphan diseases.The use of clustered regularly interspaced palindromic repeats/Cas9 has demonstrated positive results in experiments investigating its role in several diseases.Additionally,the use of adeno-associated viral vectors has shown improvement in survival,motor function,and developmental milestones,while also demonstrating reversal of sensory ataxia and cardiomyopathy in Friedreich ataxia patients.Antisense oligonucleotides have also been used in some neurologic orphan diseases with positive outcomes.Mammalian target of rapamycin inhibitors are currently being investigated and have reduced abnormal cell growth,proliferation,and angiogenesis.Emerging innovations and the role of genetic treatments open a new window of opportunity for the treatment of neurologic orphan diseases. 展开更多
关键词 neurologic orphan diseases Gene therapy Clustered regularly interspaced palindromic repeats/Cas9 Antisense oligonucleotides Adeno-associated virus mTOR inhibitors
下载PDF
Gait analysis in swine,sheep,and goats after neurologic injury:a literature review
16
作者 Jacob W.Sveum Raveena R.Mishra +3 位作者 Taylor L.Marti Jalon M.Jones Daniel J.Hellenbrand Amgad S.Hanna 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1917-1924,共8页
Medical research on neurologic ailments requires representative animal models to validate treatments before they are translated to human clinical trials.Rodents are the predominant animal model used in neurological re... Medical research on neurologic ailments requires representative animal models to validate treatments before they are translated to human clinical trials.Rodents are the predominant animal model used in neurological research despite limited anatomic and physiologic similarities to humans.As a result,functional testing designed to assess locomotor recovery after neurologic impairment is well established in rodent models.Comparatively,large r,more clinically relevant models have not been as well studied.To achieve similar locomotor testing standardization in larger animals,the models must be accessible to a wide array of researchers.Non-human primates are the most relevant animal model fo r translational research,however ethical and financial barriers limit their accessibility.This review focuses on swine,sheep,and goats as large animal alternatives for transitional studies between rodents and non-human primates.The objective of this review is to compare motor testing and data collection methods used in swine,sheep,and goats to encourage testing standardization in these larger animal models.The PubMed database was analyzed by searching combinations of swine,sheep,and goats,neurologic injuries,and functional assessments.Findings were categorized by animal model,data collection method,and assessment design.Swine and sheep were used in the majority of the studies,while only two studies were found using goats.The functional assessments included open pen analysis,treadmill walking,and guided free walking.Data collection methods included subjective behavioral rating scales and objective tools such as pressure-sensitive mats and image-based analysis software.Overall,swine and sheep were well-suited for a variety of assessment designs,with treadmill walking and guided free walking offering the most consistency across multiple trials.Data collection methods varied,but image-based gait analysis software provided the most robust analysis.Future studies should be conducted to standardize functional testing methods after neurologic impairment in large animals. 展开更多
关键词 functional testing gait analysis goats large animals neurologic injury SHEEP spinal cord injury SWINE
下载PDF
Multi-targeted anti-inflammatory drugs for the treatment of neurological disorders
17
作者 Austin Lui Omar Alzayat +5 位作者 Timothy Do David Perekopskiy Meghan Gann Taiseer Saad Elgokhy Jie Gao DaZhi Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期805-806,共2页
Inflammation and kinase pathophysiology in neurological disorders:Inflammation is one of the common features of various acute and degenerative neurological disorders,such as stroke,traumatic brain injury(TBI),Alzheime... Inflammation and kinase pathophysiology in neurological disorders:Inflammation is one of the common features of various acute and degenerative neurological disorders,such as stroke,traumatic brain injury(TBI),Alzheimer’s disease(AD),Parkinson’s disease(PD),and others.The inflammatory responses are manifested as the synthesis of inflammation mediators,recruitment of leukocytes,and other secondary injuries.Compelling evidence shows that a large number of inflammation mediators(e.g.,thrombin,reactive oxygen species,cytokines,chemokines,and other molecules)are implicated in the pathophysiological processes in neurological disorders(Liu and Ander,2012)(Figure 1).These increased inflammation mediators stimulate their downstream transmembrane receptors(e.g.,protease-activated receptors,cytokine receptors,and others),and further activate the intracellular downstream effector kinases,such as Src family kinase,Rho-associated protein kinase,Jun N-terminal kinase,extracellular signal-regulated kinase,cyclin-dependent kinase(CDK),and others(Liu and Ander,2012)(Figure 1).Aside from overlapping in different neurological disorders,numerous inflammatory molecules and multiple kinase-involved signaling pathways can be linked to a single neurological disorder such as AD(Heneka et al.,2015).Because of their pivot roles in the process of inflammation,kinases have been regarded as anti-inflammatory targets to improve outcomes of neurological disorders. 展开更多
关键词 neurologicAL INFLAMMATION INFLAMMATORY
下载PDF
Synaptic alterations as a common phase in neurological and neurodevelopmental diseases: JNK is a key mediator in synaptic changes
18
作者 Clara Alice Musi Carlo Bonadonna Tiziana Borsello 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期531-532,共2页
Brain synapses play a key role in neuronal communication:this“conversation”is at the basis of all brain activities and synaptic dysfunction leads to brain disorders.We study the modulators of this crucial synaptic f... Brain synapses play a key role in neuronal communication:this“conversation”is at the basis of all brain activities and synaptic dysfunction leads to brain disorders.We study the modulators of this crucial synaptic function and we here present the evidence supporting the c-Jun N-terminal kinase(JNK)pathway as a pivotal actor in this scenario. 展开更多
关键词 alterations diseases neurologicAL
下载PDF
Augmentation of transforming growth factor-βsignaling for the treatment of neurological disorders
19
作者 Jian Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1711-1712,共2页
Members of the transforming growth factor-β(TGF-β)superfamily perform a wide range of essential functions during development and in adulthood,as well as in response to injury and inflammation(Luo,2022).In the adult ... Members of the transforming growth factor-β(TGF-β)superfamily perform a wide range of essential functions during development and in adulthood,as well as in response to injury and inflammation(Luo,2022).In the adult central nervous system,TGF-βs and their receptors are widely expressed in all of the major neuronal,glial,and vascular cell types.Members of the TGF-βsuperfamily are pivotal responders to pathological insults to the brain.Dysfunction of TGF-βsignaling contributes to pathogenesis of neurological disorders.Manipulation of TGF-βsignaling pathway alters pathological and functional outcomes in models of neurological diseases(Luo,2022).Therefore,the TGF-βsignaling pathway has emerged as a potential therapeutic target against neurological diseases. 展开更多
关键词 neurologicAL DISORDERS INFLAMMATION
下载PDF
Recent advances in RNA-targeting therapy for neurological diseases
20
作者 Satheesh Kumar Guei-Sheung Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2663-2664,共2页
Advances in sequencing and molecular technology now allow us to understand the genetic underpinnings of complex diseases such as neurological disorders.Genetic variations(or mutations) in the DNA sequence of single ge... Advances in sequencing and molecular technology now allow us to understand the genetic underpinnings of complex diseases such as neurological disorders.Genetic variations(or mutations) in the DNA sequence of single genes have been implicated in neurological diseases such as Huntington's disease and spinal muscular atrophy.As a result,the development of gene therapies for neurological diseases is now a feasible endeavor. 展开更多
关键词 DISEASES neurologicAL HUNTINGTON
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部