Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
At 12:23 Beijing time on October 15 and 22:07 Beijing time on September 19,two LM-3B/Yuanzheng I launch vehicles lifted off from the Xichang Satellite Launch Center,putting the 39th and 40th BeiDou satellites and the ...At 12:23 Beijing time on October 15 and 22:07 Beijing time on September 19,two LM-3B/Yuanzheng I launch vehicles lifted off from the Xichang Satellite Launch Center,putting the 39th and 40th BeiDou satellites and the 37th and 38th BeiDou satellites of the BeiDou Navigation Satellite System (BDS)into their predetermined orbits respectively.展开更多
At 02:07 Beijing time on November19 and 23:57 Beijing time on November1,two LM-3B/Yuanzheng 1 launch vehicles lifted off from the Xichang Satellite Launch Center,putting the 42nd and43rd BeiDou satellites and the 41st...At 02:07 Beijing time on November19 and 23:57 Beijing time on November1,two LM-3B/Yuanzheng 1 launch vehicles lifted off from the Xichang Satellite Launch Center,putting the 42nd and43rd BeiDou satellites and the 41st BeiDou satellite of the BeiDou Navigation Satellite System(BDS)into their preset orbits respectively.展开更多
The 14th and 15th satellites for BeiDou (COMPASS) Navigation Satellite System were launched from the Xichang Satellite Launch Center (XSLC) by a LM-3B GI carrier rocket. While the 16th BeiDou satellite is in space wit...The 14th and 15th satellites for BeiDou (COMPASS) Navigation Satellite System were launched from the Xichang Satellite Launch Center (XSLC) by a LM-3B GI carrier rocket. While the 16th BeiDou satellite is in space within 2012, a regional network will展开更多
For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the i...For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the initial orbit is the fundamental of the comprehensive analysis of the satellites and their signals. Precise orbit determination(POD) also requires determination of a priori initial value with a certain precision in order to avoid problems such as filter divergence during POD. Compared with the Newton iteration method, which relies on the initial value, this study utilizes the Bancroft algorithm to directly solve the nonlinear equations with the advantage of numerical stability. The initial orbits of these two satellites are calculated based on new code signals, and their results are analyzed and discussed. The experimental results show that, with the exception of very few epochs, when the new code signal is utilized, the median and robust variance factor of the observed residuals computed using pseudo-range observations and the solved initial orbits are less than 4 and 2 m, respectively. It also shows that this solution can be used for rapid initial orbit recovery after maneuvers of the new BeiDou satellites.展开更多
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
Water vapor monitoring system by Beidou satellite is a new detection system in meteorological department, which makes receiving amount of detected data and data storage and transmission pressure increase. Here, we try...Water vapor monitoring system by Beidou satellite is a new detection system in meteorological department, which makes receiving amount of detected data and data storage and transmission pressure increase. Here, we try to use data compression to relieve pressure. Compres- sion software of water vapor monitoring system by Beidou satellite can be designed into three components: real-time compression software, check compression software and manual compression software, which respectively completes the compression tasks under real-time receiving, in-time check and separate compression, thereby forming a perfect compression system. Taking the design of manual compression software as guide,and using c language to develop,compression test of original receiving data is conducted. Test result proves that the system can carry out batch auto- matic compression, and compression rate can reach 30% ,which can reach the target of saving space in a degree.展开更多
BeiDou navigation satellite system(the BeiDou system) is the only PNT(Positioning, Navigation and Tim-ing) resource in China that has coverage of the globe and near-Earth space and provides continuous high-precision,l...BeiDou navigation satellite system(the BeiDou system) is the only PNT(Positioning, Navigation and Tim-ing) resource in China that has coverage of the globe and near-Earth space and provides continuous high-precision,low-cost positioning, navigation and timing solutions for users in a unified spatio-temporal benchmark. As an importantspatio-temporal benchmark transmission system, the BeiDou system is the most important resource for the nationalPNT system to provide a PNT capability under a unified spatial-temporal benchmark. This paper proposes the con-cept, composition and development model of the space-based PNT system design based on the BeiDou system withall its space characteristics, as well as the advantages of the system. It opens up a new direction for the construction ofChina's PNT system and expands a new horizon in the research of a PNT system in China.展开更多
A LM-3B carrier rocket lifted off from the Xichang Satellite Launch Center at 2:09 Beijing time on June 25,successfully putting the BeiDou 3 IGSO-2 satellite into orbit. IGSO-2 satellite,the 21st BeiDou 3 satellite as...A LM-3B carrier rocket lifted off from the Xichang Satellite Launch Center at 2:09 Beijing time on June 25,successfully putting the BeiDou 3 IGSO-2 satellite into orbit. IGSO-2 satellite,the 21st BeiDou 3 satellite as well as the 46th BeiDou Navigation Satellite System (BDS) satellite,was developed by the China Academy of Space Technology (CAST).At present,there are 18 MEO,I GEO and IGSO satellites among all the BeiDou 3 satellites.展开更多
A LM-3B launched the BeiDou 3 GEO-2 sallite into space at 19:55 Bei-jing time on March 9,2020,from the Xichang Satellite Launch Center.The satellite entered its predetermined orbit later,marking the success of the lau...A LM-3B launched the BeiDou 3 GEO-2 sallite into space at 19:55 Bei-jing time on March 9,2020,from the Xichang Satellite Launch Center.The satellite entered its predetermined orbit later,marking the success of the launch mission.As the 54th satellite in the BeiDou navigation satellite system and also the 29th BeiDou 3 stallite,the BeiDou 3 GEO 2 stlie,developed by the China Academy of Space Technology,is called the“lucky stllite”with the largest size,the longest designed service life and the most funcions.展开更多
As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Re...As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Regional Navigation Satellite System that starts to officially provide services for most parts of the Asia-Pacific region from December 27. The 16th BeiDou navigation satellite, the last one for the regional BeiDou system, was developed by China Academy of Space Technology under CASC.展开更多
The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the tra...The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the transportation industry improves the development level of intelligent,safe,green and shared transportation.Based on the introduction of the application requirements and characteristics of BDS in the transportation industry,this paper systematically introduces the overall status of BDS in the transportation industry,covering highways,waterways,railways,civil aviation,and the postal service.Finally,the paper forecasts future applications of BDS in the field of transportation.It identifies within the transportation industry rich application scenarios for the cultivation of advanced technologies represented by BDS,enhancing transportation safety services and guaranteeing emergency communication,while improving the operation efficiency and management level of an integrated transportation system.展开更多
China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on Febr...China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the展开更多
LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSL...LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.展开更多
At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System sat...At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was展开更多
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
文摘At 12:23 Beijing time on October 15 and 22:07 Beijing time on September 19,two LM-3B/Yuanzheng I launch vehicles lifted off from the Xichang Satellite Launch Center,putting the 39th and 40th BeiDou satellites and the 37th and 38th BeiDou satellites of the BeiDou Navigation Satellite System (BDS)into their predetermined orbits respectively.
文摘At 02:07 Beijing time on November19 and 23:57 Beijing time on November1,two LM-3B/Yuanzheng 1 launch vehicles lifted off from the Xichang Satellite Launch Center,putting the 42nd and43rd BeiDou satellites and the 41st BeiDou satellite of the BeiDou Navigation Satellite System(BDS)into their preset orbits respectively.
文摘The 14th and 15th satellites for BeiDou (COMPASS) Navigation Satellite System were launched from the Xichang Satellite Launch Center (XSLC) by a LM-3B GI carrier rocket. While the 16th BeiDou satellite is in space within 2012, a regional network will
基金supported by the Collaborative Precision Positioning Project funded by the Ministry of Science and Technology of China (No.2016YFB0501900)China Natural Science Funds (No.41231064,41674022,41574015)
文摘For the two newly launched satellites(PRN number 27 and 28) of the future global BeiDou navigation satellite system(BDS-3), there is no available broadcast ephemeris data and other initial orbit information, but the initial orbit is the fundamental of the comprehensive analysis of the satellites and their signals. Precise orbit determination(POD) also requires determination of a priori initial value with a certain precision in order to avoid problems such as filter divergence during POD. Compared with the Newton iteration method, which relies on the initial value, this study utilizes the Bancroft algorithm to directly solve the nonlinear equations with the advantage of numerical stability. The initial orbits of these two satellites are calculated based on new code signals, and their results are analyzed and discussed. The experimental results show that, with the exception of very few epochs, when the new code signal is utilized, the median and robust variance factor of the observed residuals computed using pseudo-range observations and the solved initial orbits are less than 4 and 2 m, respectively. It also shows that this solution can be used for rapid initial orbit recovery after maneuvers of the new BeiDou satellites.
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
文摘Water vapor monitoring system by Beidou satellite is a new detection system in meteorological department, which makes receiving amount of detected data and data storage and transmission pressure increase. Here, we try to use data compression to relieve pressure. Compres- sion software of water vapor monitoring system by Beidou satellite can be designed into three components: real-time compression software, check compression software and manual compression software, which respectively completes the compression tasks under real-time receiving, in-time check and separate compression, thereby forming a perfect compression system. Taking the design of manual compression software as guide,and using c language to develop,compression test of original receiving data is conducted. Test result proves that the system can carry out batch auto- matic compression, and compression rate can reach 30% ,which can reach the target of saving space in a degree.
文摘BeiDou navigation satellite system(the BeiDou system) is the only PNT(Positioning, Navigation and Tim-ing) resource in China that has coverage of the globe and near-Earth space and provides continuous high-precision,low-cost positioning, navigation and timing solutions for users in a unified spatio-temporal benchmark. As an importantspatio-temporal benchmark transmission system, the BeiDou system is the most important resource for the nationalPNT system to provide a PNT capability under a unified spatial-temporal benchmark. This paper proposes the con-cept, composition and development model of the space-based PNT system design based on the BeiDou system withall its space characteristics, as well as the advantages of the system. It opens up a new direction for the construction ofChina's PNT system and expands a new horizon in the research of a PNT system in China.
文摘A LM-3B carrier rocket lifted off from the Xichang Satellite Launch Center at 2:09 Beijing time on June 25,successfully putting the BeiDou 3 IGSO-2 satellite into orbit. IGSO-2 satellite,the 21st BeiDou 3 satellite as well as the 46th BeiDou Navigation Satellite System (BDS) satellite,was developed by the China Academy of Space Technology (CAST).At present,there are 18 MEO,I GEO and IGSO satellites among all the BeiDou 3 satellites.
文摘A LM-3B launched the BeiDou 3 GEO-2 sallite into space at 19:55 Bei-jing time on March 9,2020,from the Xichang Satellite Launch Center.The satellite entered its predetermined orbit later,marking the success of the launch mission.As the 54th satellite in the BeiDou navigation satellite system and also the 29th BeiDou 3 stallite,the BeiDou 3 GEO 2 stlie,developed by the China Academy of Space Technology,is called the“lucky stllite”with the largest size,the longest designed service life and the most funcions.
文摘As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Regional Navigation Satellite System that starts to officially provide services for most parts of the Asia-Pacific region from December 27. The 16th BeiDou navigation satellite, the last one for the regional BeiDou system, was developed by China Academy of Space Technology under CASC.
文摘The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the transportation industry improves the development level of intelligent,safe,green and shared transportation.Based on the introduction of the application requirements and characteristics of BDS in the transportation industry,this paper systematically introduces the overall status of BDS in the transportation industry,covering highways,waterways,railways,civil aviation,and the postal service.Finally,the paper forecasts future applications of BDS in the field of transportation.It identifies within the transportation industry rich application scenarios for the cultivation of advanced technologies represented by BDS,enhancing transportation safety services and guaranteeing emergency communication,while improving the operation efficiency and management level of an integrated transportation system.
文摘China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the
文摘LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.
文摘At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was