CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated....CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated. Epitaxial films of YBCO were then grown in situ on the CeO2/YSZ (yttria-stabilized ZrO2)/CeO2-buffered Ni substrates. The resulting YBCO conductors exhibited self-fleld critical current density Jc of more than 1 MA/cm^2 at 77K and superconducting transition temperature Tc of about 91K.展开更多
The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositi...The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositing gas before CeO2 films were grown in Ar and 02. At 700 ℃ under the total pressure of 26 Pa,the pure c-axis orientation tilm was obtained. X-ray θ-2θscan, pole figure and φ-scan were used to observe the microstructure of the buffer layer. The resuits show that CeO2 film has strong cube texture and the FWHM is 9°. In addition, the CeO2 film is dense and crack-free.展开更多
The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray ...The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investiga ted by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introdu cing a transition layer between Ni alloy substrate and ZrO 2 ceramic coating guarantees the high quality and properties of the coatings; ZrO 2 coatings doped with a little SiO 2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO 2 coating materials without SiO 2 ;the improvement in performance of ZrO 2 coating doped with SiO 2 is due to forming more dense coating structure by self closing effects of the flaws and pores in the ZrO 2 coatings.展开更多
The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit t...The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit the formation of NiO. In addition, the linear relationship between pre-depositing time and total depositing time is required to ensure the epitaxial growth of the films. The growth conditions of CeO2 and Y2O3 were comparatively studied, and it is found that the windows of substrate temperatures and pressures for CeO2 films are wider than that for Y2O3 films.展开更多
The Ni9.3W alloy with no ferromagnetism and high yield strength is one of the most promising textured substrate materials for coated conductors, but its low stacking fault energy makes it difficult to obtain a strong ...The Ni9.3W alloy with no ferromagnetism and high yield strength is one of the most promising textured substrate materials for coated conductors, but its low stacking fault energy makes it difficult to obtain a strong cube texture by traditional rolling methods and recrystal- lization anneals. This paper introduces four-time static recoveries during the rolling process. Rolled tapes with 80 μm in thickness were obtained by applying various deformation sequences between static recoveries to study their effects on the cube texture formation in Ni9.3W alloy substrates. The results show that rising gradient deformation sequence is an advantageous way to obtain a higher amount of cube texture, its content increases by 29.2% compared to that of traditional deformation sequence. The effect of the new recrystallization annealing process on the cube texture formation was analyzed. It is shown that the cube texture content increases with anneal temperature increasing in one-step anneal, but decreases again at higher anneal temperature. Two-step anneal could effectively improve the cube texture content, which could be further enhanced by extending holding time during the first-step anneal. However, too long holding time leads to the decrease in cube texture content. Finally, Ni9.3W alloy substrates with a cube texture content of -90.0 vol% (〈15°) are obtained by optimized two-step anneal.展开更多
文摘CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated. Epitaxial films of YBCO were then grown in situ on the CeO2/YSZ (yttria-stabilized ZrO2)/CeO2-buffered Ni substrates. The resulting YBCO conductors exhibited self-fleld critical current density Jc of more than 1 MA/cm^2 at 77K and superconducting transition temperature Tc of about 91K.
文摘The buffer layer CeO2 films were grown on cube textured metallic Ni substrates by using reactive magnetrun sputtering. Ar/H2 mixed atmosphere, which effectively inhibited the formation of NiO, was used as pre-depositing gas before CeO2 films were grown in Ar and 02. At 700 ℃ under the total pressure of 26 Pa,the pure c-axis orientation tilm was obtained. X-ray θ-2θscan, pole figure and φ-scan were used to observe the microstructure of the buffer layer. The resuits show that CeO2 film has strong cube texture and the FWHM is 9°. In addition, the CeO2 film is dense and crack-free.
文摘The thermal barrier coatings with NiCrAlY alloy bonding layer, NiCrAlY Y 2O 3 stabilized ZrO 2 transition layer and Y 2O 3 stabilized ZrO 2 ceramic layer are prepared on nickel alloy substrates using the plasma spray technique. The relationship among the composition, structure and property of the coatings are investiga ted by means of optical microscope, scanning electronic microscope and the experiments of thermal shock resistance cycling and high temperature oxidation resistance. The results show that the structure design of introdu cing a transition layer between Ni alloy substrate and ZrO 2 ceramic coating guarantees the high quality and properties of the coatings; ZrO 2 coatings doped with a little SiO 2 possesses better thermal shock resistance and more excellent hot corrosion resistance as compared with ZrO 2 coating materials without SiO 2 ;the improvement in performance of ZrO 2 coating doped with SiO 2 is due to forming more dense coating structure by self closing effects of the flaws and pores in the ZrO 2 coatings.
文摘The CeO2 and Y2O3 buffer layers were deposited on the cube textured metallic Ni substrates by using reactive magnetron sputtering. Ar/H2 mixed atmosphere, which is used as pre-depositing gas, can effectively inhibit the formation of NiO. In addition, the linear relationship between pre-depositing time and total depositing time is required to ensure the epitaxial growth of the films. The growth conditions of CeO2 and Y2O3 were comparatively studied, and it is found that the windows of substrate temperatures and pressures for CeO2 films are wider than that for Y2O3 films.
基金financially supported by the National Municipal Natural Science Foundation (Nos.51571002,51171002)the Beijing Municipal Natural Science Foundation (Nos.2132011,2172008)+2 种基金the Doctoral Program of Higher Education of Special Research Fund (No.20121103110012)Beijing Municipal Natural Science Foundation B Type(No.KZ201310005003)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (No.IDHT20130510)
文摘The Ni9.3W alloy with no ferromagnetism and high yield strength is one of the most promising textured substrate materials for coated conductors, but its low stacking fault energy makes it difficult to obtain a strong cube texture by traditional rolling methods and recrystal- lization anneals. This paper introduces four-time static recoveries during the rolling process. Rolled tapes with 80 μm in thickness were obtained by applying various deformation sequences between static recoveries to study their effects on the cube texture formation in Ni9.3W alloy substrates. The results show that rising gradient deformation sequence is an advantageous way to obtain a higher amount of cube texture, its content increases by 29.2% compared to that of traditional deformation sequence. The effect of the new recrystallization annealing process on the cube texture formation was analyzed. It is shown that the cube texture content increases with anneal temperature increasing in one-step anneal, but decreases again at higher anneal temperature. Two-step anneal could effectively improve the cube texture content, which could be further enhanced by extending holding time during the first-step anneal. However, too long holding time leads to the decrease in cube texture content. Finally, Ni9.3W alloy substrates with a cube texture content of -90.0 vol% (〈15°) are obtained by optimized two-step anneal.