A comparison of sensitivity in extratropical circulation in the Northern Hemisphere (NH) and Southern Hemisphere (SH) is conducted through observational analyses and diagnostic linear model experiments for two typ...A comparison of sensitivity in extratropical circulation in the Northern Hemisphere (NH) and Southern Hemisphere (SH) is conducted through observational analyses and diagnostic linear model experiments for two types of El Ni(n)o events,the traditional El Ni(n)o with the strongest warmth in the eastern tropical Pacific (EP El Ni(n)o) and the El Ni(n)o Modoki with the strongest warmth in the central tropical Pacific (CP El Ni(n)o).It is shown that CP El Ni(n)o favors the occurrence of a negative-phase Northern Annular Mode (NAM),while EP El Ni(n)o favors that of the Pacific-North American (PNA) pattern.In SH,both EP and CP El Ni(n)o induce a negative phase Southern Annular Mode (SAM).However,the former has a greater amplitude,which is consistent with the stronger sea surface temperature (SST) warmth.The difference in the two types of El Ni(n)o events in NH may originate from the dependence of heating-induced extratropical response on the location of initial heating,which may be associated with activity of the stationary wave.In SH,the lack of sensitivity to the location of heating can be associated with weaker activity of the stationary wave therein.展开更多
The authors used an atmospheric general circulation model (AGCM) of European Centre Hamburg Model (ECHAM5.4) and investigated the possible impacts of eastern Pacific (EP) and central Pacific (CP) El Ni(n)o o...The authors used an atmospheric general circulation model (AGCM) of European Centre Hamburg Model (ECHAM5.4) and investigated the possible impacts of eastern Pacific (EP) and central Pacific (CP) El Ni(n)o on the winter precipitation anomalies in South China.A composite analysis suggested much more rainfall during the mature phase of EP El Ni(n)o than in the case of CP El Ni(n)o,and their corresponding observed wet centers to be located in the southeast coast and the region to the south of the Yangtze River,respectively.Results obtained on the basis of model-sensitive run imply that the modelsimulated rainfall anomalies agree well with the observation,and the magnitude of simulated rainfall anomalies were found to be reduced when the amplitude of sea surface temperature anomaly (SSTA) forcing of EP and CP El Ni(n)o was cut down.These results imply that the rainfall anomaly in South China is very sensitive not only to the type of El Ni(n)o but also to its intensity.展开更多
The adsorption of O and N atoms on the Ni(311) surface was investigated by the 5-parameter Morse potential(5-MP) method in detail. For the O-Ni(311) system, there are three surface adsorption states and the fcc-...The adsorption of O and N atoms on the Ni(311) surface was investigated by the 5-parameter Morse potential(5-MP) method in detail. For the O-Ni(311) system, there are three surface adsorption states and the fcc-3-fold site is metastable; the frequency of 75 meV[67 meV in high resolution electron energy loss spectroscopy(HREELS) experiment] is attributed to the vibration at the hcp-3-fold site. For the N-Ni(311) system, however, there are only two surface adsorption states(no surface adsorption state was calculated atfcc-3-fold site). In addition, subsurface states were predicted and all critical characteristics were obtained for the two systems.展开更多
A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature a...A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.展开更多
基金supported by the National Natural Science Foundation of China(41205048)the National Basic Research Program of China,"Structures,Variability and Climatic Impacts of Ocean Circulation and Warm Pool in the Tropical Pacific Ocean"(2012CB417403)the Special Project of Chinese Academy of Sciences(XDA11010401)
文摘A comparison of sensitivity in extratropical circulation in the Northern Hemisphere (NH) and Southern Hemisphere (SH) is conducted through observational analyses and diagnostic linear model experiments for two types of El Ni(n)o events,the traditional El Ni(n)o with the strongest warmth in the eastern tropical Pacific (EP El Ni(n)o) and the El Ni(n)o Modoki with the strongest warmth in the central tropical Pacific (CP El Ni(n)o).It is shown that CP El Ni(n)o favors the occurrence of a negative-phase Northern Annular Mode (NAM),while EP El Ni(n)o favors that of the Pacific-North American (PNA) pattern.In SH,both EP and CP El Ni(n)o induce a negative phase Southern Annular Mode (SAM).However,the former has a greater amplitude,which is consistent with the stronger sea surface temperature (SST) warmth.The difference in the two types of El Ni(n)o events in NH may originate from the dependence of heating-induced extratropical response on the location of initial heating,which may be associated with activity of the stationary wave.In SH,the lack of sensitivity to the location of heating can be associated with weaker activity of the stationary wave therein.
基金supported by the National Basic Research Program of China(2009CB421404)the National Natural Science Foundation of China(41175071,41221064)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(2012Z001,2013Z002,2010Z001,and 2010Z003)
文摘The authors used an atmospheric general circulation model (AGCM) of European Centre Hamburg Model (ECHAM5.4) and investigated the possible impacts of eastern Pacific (EP) and central Pacific (CP) El Ni(n)o on the winter precipitation anomalies in South China.A composite analysis suggested much more rainfall during the mature phase of EP El Ni(n)o than in the case of CP El Ni(n)o,and their corresponding observed wet centers to be located in the southeast coast and the region to the south of the Yangtze River,respectively.Results obtained on the basis of model-sensitive run imply that the modelsimulated rainfall anomalies agree well with the observation,and the magnitude of simulated rainfall anomalies were found to be reduced when the amplitude of sea surface temperature anomaly (SSTA) forcing of EP and CP El Ni(n)o was cut down.These results imply that the rainfall anomaly in South China is very sensitive not only to the type of El Ni(n)o but also to its intensity.
基金Supported by the Natural Science Foundation of Shandong Province, China(No.Y2006B29).
文摘The adsorption of O and N atoms on the Ni(311) surface was investigated by the 5-parameter Morse potential(5-MP) method in detail. For the O-Ni(311) system, there are three surface adsorption states and the fcc-3-fold site is metastable; the frequency of 75 meV[67 meV in high resolution electron energy loss spectroscopy(HREELS) experiment] is attributed to the vibration at the hcp-3-fold site. For the N-Ni(311) system, however, there are only two surface adsorption states(no surface adsorption state was calculated atfcc-3-fold site). In addition, subsurface states were predicted and all critical characteristics were obtained for the two systems.
基金supported by a National Natural Science Foundation project approved under Grant Nos.41175083,41275096 and 41305091a China Meteorological Administration special public welfare reserch funds registeredunder Grant Nos.GYHY201006020,GYHY 201106016,and GYHY201106015
文摘A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.