对不同热处理温度与Ni Mo P、Ni Mo P/Al2O3及Ni Mo P/PPS合金镀层的耐蚀性的影响进行了对比;并对Ni Mo P/PPS镀层进行表面复合涂敷,观察了涂敷层的截面的形貌并测定其耐蚀性。结果表明,Ni Mo P/PPS镀层具有良好的耐蚀性,在85℃的腐蚀...对不同热处理温度与Ni Mo P、Ni Mo P/Al2O3及Ni Mo P/PPS合金镀层的耐蚀性的影响进行了对比;并对Ni Mo P/PPS镀层进行表面复合涂敷,观察了涂敷层的截面的形貌并测定其耐蚀性。结果表明,Ni Mo P/PPS镀层具有良好的耐蚀性,在85℃的腐蚀速率为Ni Mo P镀层的1/3;与化学镀层相比,复合涂敷层具有极其良好的耐蚀性,涂敷层与镀层之间结合致密、无间隙。展开更多
The diffusion barrier Ni-Mo-P film for Cu interconnects was prepared on SiO2/Si substrate using electroless method. The surface morphology and composition during the formation process of electroless Ni-Mo-P film were ...The diffusion barrier Ni-Mo-P film for Cu interconnects was prepared on SiO2/Si substrate using electroless method. The surface morphology and composition during the formation process of electroless Ni-Mo-P film were investigated through analyzing samples of different deposition time. Induced nucleation, induced co-deposition, and self-induced growth mechanisms involved in electroless process were confirmed by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry and atomic force microscopy (AFM). Firstly, the preceding palladium particles as catalysts induce the nucleation of nickel. Secondly, the nickel particles induce the deposition of molybdenum and phosphorus, which attributes to induced co-deposition. Thirdly, former deposited Ni-Mo-P induces deposition of the latter Ni-Mo-P particles. Moreover, the reaction mechanism was proposed with the oxydate of 3-4PO .展开更多
Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were mea...Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.展开更多
文摘对不同热处理温度与Ni Mo P、Ni Mo P/Al2O3及Ni Mo P/PPS合金镀层的耐蚀性的影响进行了对比;并对Ni Mo P/PPS镀层进行表面复合涂敷,观察了涂敷层的截面的形貌并测定其耐蚀性。结果表明,Ni Mo P/PPS镀层具有良好的耐蚀性,在85℃的腐蚀速率为Ni Mo P镀层的1/3;与化学镀层相比,复合涂敷层具有极其良好的耐蚀性,涂敷层与镀层之间结合致密、无间隙。
文摘The diffusion barrier Ni-Mo-P film for Cu interconnects was prepared on SiO2/Si substrate using electroless method. The surface morphology and composition during the formation process of electroless Ni-Mo-P film were investigated through analyzing samples of different deposition time. Induced nucleation, induced co-deposition, and self-induced growth mechanisms involved in electroless process were confirmed by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometry and atomic force microscopy (AFM). Firstly, the preceding palladium particles as catalysts induce the nucleation of nickel. Secondly, the nickel particles induce the deposition of molybdenum and phosphorus, which attributes to induced co-deposition. Thirdly, former deposited Ni-Mo-P induces deposition of the latter Ni-Mo-P particles. Moreover, the reaction mechanism was proposed with the oxydate of 3-4PO .
基金Project(ZR2011EMM014)supported by Shandong Provincial Natural Science Foundation of China
文摘Single Ni-P and Ni-Mo-P coatings as well as duplex Ni-P/Ni-Mo-P coatings with the same compositions were prepared by electroless plating.The residual stresses of the coatings on the surface and cross sections were measured by nanoindentation and AFM analysis,and the corrosion behaviour of the coatings in10%HCl solution was evaluated by electrochemical methods,to establish the correlation between the residual stresses and corrosion behaviour of the coatings.The results showed that the single Ni-P and duplex Ni-P/Ni-Mo-P coatings presented residual compressive stresses of241and206MPa respectively,while the single Ni-Mo-P coating exhibited a residual tensile stress of257MPa.The residual compressive stress impeded the growth of the pre-existing porosity in the coatings,protecting the integrity of the coating.The duplex Ni-P/Ni-Mo-P coatings had better corrosion resistance than their respective single coating.In addition,the stress states affect the corrosive form of coatings.