Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ...Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed.展开更多
An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton-finite difference(CA-FD) method was used to investigate the dendrite growth during di...An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton-finite difference(CA-FD) method was used to investigate the dendrite growth during directional solidification(DS)process. The solute diffusion model combined with macro temperature field model was established for predicting the dendrite growth behavior. Model validation was performed by the DS experiment, and the cooling curves and grain structures obtained by the experiment presented a reasonable agreement with the simulation results. The competitive growth of dendrites was also simulated by the proposed model, and the competitive behavior of dendrites with different misalignment angles was also discussed in detail.Subsequently, 3D dendrites growth was also investigated by experiment and simulation, and both were in good accordance. The influence on dendrites growth of initial nucleus was investigated by three simulation cases, and the results showed that the initial nuclei just had an effect on the initial growth stage of columnar dendrites, but had little influence on the final dendritic morphology and the primary dendrite arm spacing.展开更多
The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing...The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing decreases from 94 μm to 35.8 μm with the increase of directional solidification cooling rate from 2.525 K/s to 36.4 K/s. The regression equation of the primary dendrite arm spacings A, versus cooling rate is λ1=0.013(GV)-0.32. The predictions of Kurz/Fisher model and Hunt/Lu model accord reasonably well with the experimental data. The influence of directional solidification rate under variable thermal gradient on the primary dendrite arm spacing has also been investigated.展开更多
The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the con...The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the content of Mo decreases with the increase of Ta in liquid phase after directional solidification,indicating the addition of Ta can reduce the element segregation in alloys.The primary and secondary dendrite arm spacings(PDAS and SDAS)of the DZ411 alloy increase with the addition of Ta,which are consistent with the models by Hunt and Wagner.The increase of PDAS and SDAS can provide enough space for the growth of tertiary dendrite arms,which hinders the growth of unfavorably oriented primary dendrites.As a result,the addition of Ta facilitates the growth of favorably oriented dendrites.More MC carbides andγ-γ'eutectics are formed in the interdendritic regions,which is attributed to the segregation of Ta in the liquid phase.Furthermore,the degree of supersaturation of W,Mo inγmatrix increases with the increase of Ta,thus,the addition of Ta promotes the formation of TCP phase.The addition of Ta also increases the microhardness in both the primary dendrite and interdendritic regions of the alloy,and the microhardness of the primary dendrite is closer to that in interdendritic regions with the increase of Ta.展开更多
The solidification characteristics and the hot tearing susceptibility were investigated on two Ni-based superalloys for turbocharger turbine wheel, K418 and K419. The segregation behaviors of the alloying elements and...The solidification characteristics and the hot tearing susceptibility were investigated on two Ni-based superalloys for turbocharger turbine wheel, K418 and K419. The segregation behaviors of the alloying elements and the precipitation phases were also studied. The results show that the solidification behavior of K419 alloy is complicated when compared with K418 due to the interdendritic segregation of many kinds of strong interdendritic partitioning elements in the remaining liquid at the final stage of solidification. The segregation of multiple elements in interdendritic liquid results in an extremely low solidus in K419. A long residual liquid stage is found during the solidification of K419, giving rise to reduced cohesion strength of dendrites and increased sensitivity to hot tearing. A hot tearing susceptibility coefficient(HTS) criterion is proposed based on a hot tearing sensitive model. The HTS value of K419 alloy is larger than that of K418 alloy.展开更多
The floating phenomenon of MC carbide(TiC)in a hot corrosion resistant single crystal Ni-base superalloy was observed during planar and cellular interface directional solidification.The explanation about the phenomeno...The floating phenomenon of MC carbide(TiC)in a hot corrosion resistant single crystal Ni-base superalloy was observed during planar and cellular interface directional solidification.The explanation about the phenomenon is presented.展开更多
To enhance the accuracy of mechanical simulation in the directional solidification process of turbine blades for heavy-duty gas turbines,a new constitutive model that employs machine learning methods was developed.Thi...To enhance the accuracy of mechanical simulation in the directional solidification process of turbine blades for heavy-duty gas turbines,a new constitutive model that employs machine learning methods was developed.This model incorporates incremental learning and transfer learning,thus improves the predictive accuracy and generalization performance.To account for the anisotropy of the directionally solidified alloy,a deformation direction parameter is added to the model,enabling prediction of the stress-strain relationship of the alloy under different deformation directions.The predictive capabilities of both models are evaluated using correlation coefficient(R),average relative error(δ),and value of relative error(RE).Compared to the traditional model,the machine learning constitutive model achieves higher prediction accuracy and better generalization performance.This offers a new approach for the establishment of flow constitutive models for other directionally solidified and single-crystal superalloys.展开更多
The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional sol...The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.展开更多
Directional solidified turbine blades of Ni-based superalloy are widely used as key parts of the gas turbine engines.The mechanical properties of the blade are greatly influenced by the final microstructure and the gr...Directional solidified turbine blades of Ni-based superalloy are widely used as key parts of the gas turbine engines.The mechanical properties of the blade are greatly influenced by the final microstructure and the grain orientation determined directly by the grain selector geometry of the casting.In this paper,mathematical models were proposed for three dimensional simulation of the grain growth and microstructure evolution in directional solidification of turbine blade casting.Ray-tracing method was applied to calculate the temperature variation of the blade.Based on the thermo model of heat transfer,the competitive grain growth within the starter block and the spiral of the grain selector,the grain growth in the blade and the microstructure evolution were simulated via a modified Cellular Automaton method.Validation experiments were carried out,and the measured results were compared quantitatively with the predicted results.The simulated cooling curves and microstructures corresponded well with the experimental results.The proposed models could be used to predict the grain morphology and the competitive grain evolution during directional solidification.展开更多
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeli...As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.展开更多
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observati...A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy.展开更多
The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show t...The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys展开更多
The properties of Ni-base superalloy castings microstructure, and different solidification methods have are closely related to the uniformity of their as-cast serious effect on microstructural uniformity. In this pape...The properties of Ni-base superalloy castings microstructure, and different solidification methods have are closely related to the uniformity of their as-cast serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS) process (with or without superheating) and liquid metal cooling (LMC) process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 pm.s-1 to 110 tJm.s1 using HRS process and a comparative experiment was carried out at a rate of 70 IJm.s1 by LMC process. The optical microscope (OM), scanning electron microscope (SEM) were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD) technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of 7' precipitates decrease with increasing the withdrawal rate; the dendrites and 7' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 iJm.s1, the castings by HRS with high superheating technique have the smallest PDAS with fine 7' precipitates; while the size distribution of 7' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size.展开更多
The total content of Al and Ti in advanced Ni-based wrought superalloys is up to 7.5wt.%,which makes it easier to form harmful nonequilibrium eutectic(γ+γ′)andηphase.It has been reported that the addition of certa...The total content of Al and Ti in advanced Ni-based wrought superalloys is up to 7.5wt.%,which makes it easier to form harmful nonequilibrium eutectic(γ+γ′)andηphase.It has been reported that the addition of certain amount of Zr can modify precipitation of the nonequilibrium phases obviously,but the mechanism is still controversial.The effect of Zr ranging from<0.0006wt.%to 0.150wt.%on solidification behavior,segregation and microstructure of a Ni-based superalloy with high Al and Ti contents was investigated,eliminating the interferences of C and B.Results show that increase in Zr content significantly promotes the formation of eutectic(γ+γ′),ηand Zr-rich phase in the interdendritic region.Besides the Zr-rich phase,Zr dissolves slightly in the eutecticγ′and obviously in theηphase.An interesting phenomenon is discovered that the Zr addition significantly increases the area fraction of liquid pools and enlarges the forming range ofγdendrites,which suggests that Zr markedly retards the solidification.Zr affects the eutectic(γ+γ′)andηformation mainly due to the retard of solidification and dissolution of Zr in them.The retard of solidification obviously increases the residual liquid fraction and undercooling.Zr can serve as a forming element for the eutectic(γ+γ′)andηphase,and the obvious dissolution of Zr inηphase significantly decreases the critical concentration of Ti for its precipitation.展开更多
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples...The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.展开更多
An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the ...An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized.展开更多
The high temperature high cycle fatigue behaviour of a directionally solidified Co-base superalloy was investigated. The alloy has saperior fatigue resistance at 900℃ and its fatigue strength is up to 295MPa. Its σ-...The high temperature high cycle fatigue behaviour of a directionally solidified Co-base superalloy was investigated. The alloy has saperior fatigue resistance at 900℃ and its fatigue strength is up to 295MPa. Its σ-Nf curve is characterized by three distinct zones. The stronger dependence of Nf on or in the high .and low stress zones results from multiple fatigue crock initiation sites produced by high stress and oxidation effect in a prolonged exposure, respectively.展开更多
A series of directional solidification experiments have been performed to study the effect of cooling rate on the precipitation behavior of MC carbide in nickel-based superalloy under the temperature gradient of 500 K...A series of directional solidification experiments have been performed to study the effect of cooling rate on the precipitation behavior of MC carbide in nickel-based superalloy under the temperature gradient of 500 K-s^-1. Results reveal that the morphology of MC carbide changes from coarse block to fine strip, then to Chinese-script, and their sizes reduce gradually with the increasing of cooling rate from 2.53 K.s^-1 to 36.4 K.s^-1. At low cooling rates, most of these carbides are found to be located at the grain boundary and interdendritic regions, while the coupled growth of some carbides and 7 matrix in the center of 7 grains is occurred at high cooling rate. The main elements forming MC carbide are Ta, W, and Hf.展开更多
The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718 has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX) techniq...The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718 has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX) techniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra) profiles along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fluid flow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 degrees C for Inconel 718 where the fluid flow most easily occurred.展开更多
基金supported by the Stable Support Project and the Major National Science and Technology Project(Grant No.2017-VII-0008-0101).
文摘Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed.
基金Project(2017ZX04014001) supported by the National Science and Technology Major Project of ChinaProject(2017YFB0701503) supported by the National Key R&D Program of ChinaProject(51374137) supported by the National Natural Science Foundation of China
文摘An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton-finite difference(CA-FD) method was used to investigate the dendrite growth during directional solidification(DS)process. The solute diffusion model combined with macro temperature field model was established for predicting the dendrite growth behavior. Model validation was performed by the DS experiment, and the cooling curves and grain structures obtained by the experiment presented a reasonable agreement with the simulation results. The competitive growth of dendrites was also simulated by the proposed model, and the competitive behavior of dendrites with different misalignment angles was also discussed in detail.Subsequently, 3D dendrites growth was also investigated by experiment and simulation, and both were in good accordance. The influence on dendrites growth of initial nucleus was investigated by three simulation cases, and the results showed that the initial nuclei just had an effect on the initial growth stage of columnar dendrites, but had little influence on the final dendritic morphology and the primary dendrite arm spacing.
基金supported by the National Natural Science Foundation of China(50771081,50827102)the National Basic Research Program of China(2006CB605202)
文摘The primary dendrite morphology and spacing of DZ125 superalloy have been observed during directional solidification under high thermal gradient about 500 K/cm. The results reveal that the primary dendrite arm spacing decreases from 94 μm to 35.8 μm with the increase of directional solidification cooling rate from 2.525 K/s to 36.4 K/s. The regression equation of the primary dendrite arm spacings A, versus cooling rate is λ1=0.013(GV)-0.32. The predictions of Kurz/Fisher model and Hunt/Lu model accord reasonably well with the experimental data. The influence of directional solidification rate under variable thermal gradient on the primary dendrite arm spacing has also been investigated.
基金This study was funded by the National Natural Science Foundation of China(Grant No.51871118)the fund of the State Key Laboratory of Solidification Processing in NPU,(Grant No.SKLSP202204)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-ey15).
文摘The effects of Ta content(2.72wt.%,3.10wt.%and 4.00wt.%)on the solidification characteristics and mechanical properties of directionally solidified DZ411 Ni-based superalloys were investigated.It is found that the content of Mo decreases with the increase of Ta in liquid phase after directional solidification,indicating the addition of Ta can reduce the element segregation in alloys.The primary and secondary dendrite arm spacings(PDAS and SDAS)of the DZ411 alloy increase with the addition of Ta,which are consistent with the models by Hunt and Wagner.The increase of PDAS and SDAS can provide enough space for the growth of tertiary dendrite arms,which hinders the growth of unfavorably oriented primary dendrites.As a result,the addition of Ta facilitates the growth of favorably oriented dendrites.More MC carbides andγ-γ'eutectics are formed in the interdendritic regions,which is attributed to the segregation of Ta in the liquid phase.Furthermore,the degree of supersaturation of W,Mo inγmatrix increases with the increase of Ta,thus,the addition of Ta promotes the formation of TCP phase.The addition of Ta also increases the microhardness in both the primary dendrite and interdendritic regions of the alloy,and the microhardness of the primary dendrite is closer to that in interdendritic regions with the increase of Ta.
基金Project(2010CB631200)supported by the National Basic Research Program of China
文摘The solidification characteristics and the hot tearing susceptibility were investigated on two Ni-based superalloys for turbocharger turbine wheel, K418 and K419. The segregation behaviors of the alloying elements and the precipitation phases were also studied. The results show that the solidification behavior of K419 alloy is complicated when compared with K418 due to the interdendritic segregation of many kinds of strong interdendritic partitioning elements in the remaining liquid at the final stage of solidification. The segregation of multiple elements in interdendritic liquid results in an extremely low solidus in K419. A long residual liquid stage is found during the solidification of K419, giving rise to reduced cohesion strength of dendrites and increased sensitivity to hot tearing. A hot tearing susceptibility coefficient(HTS) criterion is proposed based on a hot tearing sensitive model. The HTS value of K419 alloy is larger than that of K418 alloy.
文摘The floating phenomenon of MC carbide(TiC)in a hot corrosion resistant single crystal Ni-base superalloy was observed during planar and cellular interface directional solidification.The explanation about the phenomenon is presented.
基金supported by the National Science and Technology Major Project(2017-VII-0008-0101).
文摘To enhance the accuracy of mechanical simulation in the directional solidification process of turbine blades for heavy-duty gas turbines,a new constitutive model that employs machine learning methods was developed.This model incorporates incremental learning and transfer learning,thus improves the predictive accuracy and generalization performance.To account for the anisotropy of the directionally solidified alloy,a deformation direction parameter is added to the model,enabling prediction of the stress-strain relationship of the alloy under different deformation directions.The predictive capabilities of both models are evaluated using correlation coefficient(R),average relative error(δ),and value of relative error(RE).Compared to the traditional model,the machine learning constitutive model achieves higher prediction accuracy and better generalization performance.This offers a new approach for the establishment of flow constitutive models for other directionally solidified and single-crystal superalloys.
基金financially supported by National Natural Science Foundation of China(No.50827102)the Scientific Research Foundation for Ph.D.,Northwest A&F University(No.Z109021103)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges,Northwest A&F University(No.Z109021114)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201220)
文摘The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.
基金financially supported by the National Basic Research Program of China (No.2005CB724105,2011CB706801)National Natural Science Foundation of China (No.10477010)+1 种基金National High Technology Research,Development Program of China (No.2007AA04Z141)Important National Science & Technology Specific Projects (No.2009ZX04006-041,2011ZX04014-052)
文摘Directional solidified turbine blades of Ni-based superalloy are widely used as key parts of the gas turbine engines.The mechanical properties of the blade are greatly influenced by the final microstructure and the grain orientation determined directly by the grain selector geometry of the casting.In this paper,mathematical models were proposed for three dimensional simulation of the grain growth and microstructure evolution in directional solidification of turbine blade casting.Ray-tracing method was applied to calculate the temperature variation of the blade.Based on the thermo model of heat transfer,the competitive grain growth within the starter block and the spiral of the grain selector,the grain growth in the blade and the microstructure evolution were simulated via a modified Cellular Automaton method.Validation experiments were carried out,and the measured results were compared quantitatively with the predicted results.The simulated cooling curves and microstructures corresponded well with the experimental results.The proposed models could be used to predict the grain morphology and the competitive grain evolution during directional solidification.
基金supported by the National Basic Research Program of China(No.2011CB706801)the National Natural Science Foundation of China(Nos.51171089 and 51374137)the National Science and Technology Major Project(Nos.2011ZX04014-052 and 2012ZX04012-011)
文摘As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
基金Projects(2012BAI18B05,2012BAI18B01)supported by the Twelfth Five-Year National Science&Technology Support Program of ChinaProject(2009CB93004)supported by the National Basic Researh Program of China
文摘A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy.
基金Projects(2011CB610406,2010CB631202)supported by the National Basic Research Program of ChinaProjects(51101120,50931004,51171151)supported by the National Natural Science Foundation of China
文摘The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys
基金supported by the National Natural Science Foundation of China(Grant Nos.50827102 and 50931004)National Basic Research Program of China(Grant No.2010CB631202 and No.2006CB605202)High Technology Research and Development Program of China(Grant No.2007AA03Z552)
文摘The properties of Ni-base superalloy castings microstructure, and different solidification methods have are closely related to the uniformity of their as-cast serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS) process (with or without superheating) and liquid metal cooling (LMC) process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 pm.s-1 to 110 tJm.s1 using HRS process and a comparative experiment was carried out at a rate of 70 IJm.s1 by LMC process. The optical microscope (OM), scanning electron microscope (SEM) were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD) technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of 7' precipitates decrease with increasing the withdrawal rate; the dendrites and 7' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 iJm.s1, the castings by HRS with high superheating technique have the smallest PDAS with fine 7' precipitates; while the size distribution of 7' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size.
基金financially supported by the National Natural Science Foundation of China(Grant No.51904146)。
文摘The total content of Al and Ti in advanced Ni-based wrought superalloys is up to 7.5wt.%,which makes it easier to form harmful nonequilibrium eutectic(γ+γ′)andηphase.It has been reported that the addition of certain amount of Zr can modify precipitation of the nonequilibrium phases obviously,but the mechanism is still controversial.The effect of Zr ranging from<0.0006wt.%to 0.150wt.%on solidification behavior,segregation and microstructure of a Ni-based superalloy with high Al and Ti contents was investigated,eliminating the interferences of C and B.Results show that increase in Zr content significantly promotes the formation of eutectic(γ+γ′),ηand Zr-rich phase in the interdendritic region.Besides the Zr-rich phase,Zr dissolves slightly in the eutecticγ′and obviously in theηphase.An interesting phenomenon is discovered that the Zr addition significantly increases the area fraction of liquid pools and enlarges the forming range ofγdendrites,which suggests that Zr markedly retards the solidification.Zr affects the eutectic(γ+γ′)andηformation mainly due to the retard of solidification and dissolution of Zr in them.The retard of solidification obviously increases the residual liquid fraction and undercooling.Zr can serve as a forming element for the eutectic(γ+γ′)andηphase,and the obvious dissolution of Zr inηphase significantly decreases the critical concentration of Ti for its precipitation.
基金financial support of the National Natural Science Foundation of China(Nos.52130110 and U22A20189)the Research Fund of the State Key Laboratory of Solidification Processing(No.2023-TS-10)。
文摘The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics.
文摘An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized.
文摘The high temperature high cycle fatigue behaviour of a directionally solidified Co-base superalloy was investigated. The alloy has saperior fatigue resistance at 900℃ and its fatigue strength is up to 295MPa. Its σ-Nf curve is characterized by three distinct zones. The stronger dependence of Nf on or in the high .and low stress zones results from multiple fatigue crock initiation sites produced by high stress and oxidation effect in a prolonged exposure, respectively.
基金financially supported by the Scientific Research Foundation for Ph.D.,Northwest A & F University (No.Z109021103)the Special Fund for Basic Scientific Research of Central Colleges,Northwest A & F University No.Z109021114)the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201220)
文摘A series of directional solidification experiments have been performed to study the effect of cooling rate on the precipitation behavior of MC carbide in nickel-based superalloy under the temperature gradient of 500 K-s^-1. Results reveal that the morphology of MC carbide changes from coarse block to fine strip, then to Chinese-script, and their sizes reduce gradually with the increasing of cooling rate from 2.53 K.s^-1 to 36.4 K.s^-1. At low cooling rates, most of these carbides are found to be located at the grain boundary and interdendritic regions, while the coupled growth of some carbides and 7 matrix in the center of 7 grains is occurred at high cooling rate. The main elements forming MC carbide are Ta, W, and Hf.
基金supported by the National Natural Science Foundation of China (No. 50371006)the school fund of Nanjing University of Information Science and Technology
文摘The interdendritic segregation along the mushy zone of directionally solidified superalloy Inconel 718 has been measured by scanning electron microscope (SEM) and energy dispersion analysis spectrometry (EDAX) techniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra) profiles along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fluid flow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 degrees C for Inconel 718 where the fluid flow most easily occurred.