Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic ac...Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.展开更多
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda...Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance.展开更多
The development of low-cost,robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction(HER).Herein,a self-standing electrocatalyst,Ni_(2)P/CoP nanosheet,was fabricated...The development of low-cost,robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction(HER).Herein,a self-standing electrocatalyst,Ni_(2)P/CoP nanosheet,was fabricated directly on three-dimensional Ni foams by two facile steps,which illustrated both high activity and stability for HER in different electrolytes.Benefiting from the porous structures of nanosheets with large specific surface area and the hybrid Ni_(2)P/CoP,the as-prepared electrocatalyst presented remarkable HER with overpotentials of 65.2 and 87.8 mV to reach a current density of-10 mA cm^(-2)in neutral and alkaline media,respectively.Density function theory calculations revealed a lower activation energy of water dissociation and efficient HER steps of hybrid Ni_(2)P/CoP nanosheets compared with mono CoP.The self-standing electrocatalyst maintained excellent chemical stability.Additionally,the HER process in domestic wastewater was realized with more impressive performance by using Ni_(2)P/CoP nanosheets compared with commercial Pt/C.Hydrogen was continuously generated for 20 h in mildly alkaline dishwashing wastewater.This work provides a feasible way to fabricate non-noble metal and self-standing hybrid bimetallic phosphides for HER in neutral and alkaline media,showing great potential for efficient hydrogen production by re-utilizing wastewater resources.展开更多
NizP supported catalysts exhibit high catalytic activities in hydrogenation reaction,of which the particle sizes of Ni_(2)P active phases are the key influential factor.This research focus on the effect of chelators o...NizP supported catalysts exhibit high catalytic activities in hydrogenation reaction,of which the particle sizes of Ni_(2)P active phases are the key influential factor.This research focus on the effect of chelators on the size of Ni_(2)P particles over wrinkle silica nanoparticles(WSNs)by introducing chelating agents EDTA and NTA during impregnation process.The characterization results show that chelators modified cata-lysts possess smaller size of Ni_(2)P particles than the unmodified Ni_(2)P catalysts.Among all the synthesized catalysts,the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst possesses smallest average particle size of Ni_(2)P,only 2.6 nm.Moreover,the Ni_(2)P catalysts with the assistance of EDTA exhibits better catalytic activity than that of NTA under high reaction temperature,which can be ascribed to the strong bonding between EDTA and Ni.And the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst shows highest hydrogenation ability,almost reaching 100%decalin selectivity.展开更多
Air-stable layered structured cathodes with high voltage and good cycling stability are highly desired for the practical application of Na-ion batteries.Herein,we report a P2-Na_(2/3)Ni_(2/3)Te_(1/3)O_(2) cathode that...Air-stable layered structured cathodes with high voltage and good cycling stability are highly desired for the practical application of Na-ion batteries.Herein,we report a P2-Na_(2/3)Ni_(2/3)Te_(1/3)O_(2) cathode that is stable in ambient air with an average operating voltage of~3.8 V,demonstrating excellent cycling stability with a capacity retention of more than 92.7%after 500 cycles at 20 mA g^(-1) and good rate capability with 91.9%capacity utilization at 500 mA g^(-1) with respect to capacity at 5 mA g^(-1) between 2.0 and 4.0 V.When the upper cutoff voltage is increased to 4.4 V,P2-Na_(2/3)Ni_(2/3)Te_(1/3)O_(2) delivers a reversible capacity of 71.9 mAh g^(-1) and retains 91.8%of the capacity after 100 cycles at 20 mA g^(-1).The charge compensation during charge/discharge is mainly due to the redox couple of Ni^(2+)/Ni^(3+)in the host with a small amount of contribution from oxygen.The stable structure of the material without phase transformation and with small volume change during charge-discharge allows it to give excellent cycle performance especially when the upper cutoff voltage is not higher than 4.2 V.展开更多
Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_...Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries.展开更多
基金financially supported by National Natural Science Foundation of China(81700524)Natural Science Foundation of Fujian Province(2022J01866)from Fujian Provincial Department of Science and Technology+1 种基金Key Project of Fujian University of Traditional Chinese Medicine(X2021019)Collaborative Innovation and Platform Establishment Project of Department of Science and Technology of Guangdong Province(2019A050520003)。
文摘Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.
基金financially supported by the Shenzhen Science and Technology Program(JCYJ20220530141012028),ChinaThe National Natural Science Foundation of China(22005178),China+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01),ChianThe fellowship of China Postdoctoral Science Foundation(2022M722333),Chianthe Jiangsu Funding Program for Excellent Postdoctoral Talent,Chian。
文摘Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance.
基金China Scholarship Council/University College London for joint PhD scholarships,Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/1,EP/L015862/1,EP/R023581/1)supported by the Royal Academy of Engineering under the Research Chairs and Senior Research Fellowships scheme(Brett and Shearing)the Royal Society(RGS\R1\211080,IEC\NSFC\201261)for funding support.
文摘The development of low-cost,robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction(HER).Herein,a self-standing electrocatalyst,Ni_(2)P/CoP nanosheet,was fabricated directly on three-dimensional Ni foams by two facile steps,which illustrated both high activity and stability for HER in different electrolytes.Benefiting from the porous structures of nanosheets with large specific surface area and the hybrid Ni_(2)P/CoP,the as-prepared electrocatalyst presented remarkable HER with overpotentials of 65.2 and 87.8 mV to reach a current density of-10 mA cm^(-2)in neutral and alkaline media,respectively.Density function theory calculations revealed a lower activation energy of water dissociation and efficient HER steps of hybrid Ni_(2)P/CoP nanosheets compared with mono CoP.The self-standing electrocatalyst maintained excellent chemical stability.Additionally,the HER process in domestic wastewater was realized with more impressive performance by using Ni_(2)P/CoP nanosheets compared with commercial Pt/C.Hydrogen was continuously generated for 20 h in mildly alkaline dishwashing wastewater.This work provides a feasible way to fabricate non-noble metal and self-standing hybrid bimetallic phosphides for HER in neutral and alkaline media,showing great potential for efficient hydrogen production by re-utilizing wastewater resources.
基金supported by the National Natural Science Foundation of China(No.21878330)Key Research and Development Program of Ministry of Science and Technology of China(No.2019YFC1907602)Scientific Research and Technology Development Program of China National Petroleum Corporation(2020B-2116).
文摘NizP supported catalysts exhibit high catalytic activities in hydrogenation reaction,of which the particle sizes of Ni_(2)P active phases are the key influential factor.This research focus on the effect of chelators on the size of Ni_(2)P particles over wrinkle silica nanoparticles(WSNs)by introducing chelating agents EDTA and NTA during impregnation process.The characterization results show that chelators modified cata-lysts possess smaller size of Ni_(2)P particles than the unmodified Ni_(2)P catalysts.Among all the synthesized catalysts,the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst possesses smallest average particle size of Ni_(2)P,only 2.6 nm.Moreover,the Ni_(2)P catalysts with the assistance of EDTA exhibits better catalytic activity than that of NTA under high reaction temperature,which can be ascribed to the strong bonding between EDTA and Ni.And the EDTA modified Ni_(2)PE(1.5)/WSNs catalyst shows highest hydrogenation ability,almost reaching 100%decalin selectivity.
基金supported by National Natural Science Foundation of China(Grant No.52100084)Shenzhen Natural Science Fund(the Stable Support Plan Program GXWD20201230155427003-20200824094017001).
文摘Air-stable layered structured cathodes with high voltage and good cycling stability are highly desired for the practical application of Na-ion batteries.Herein,we report a P2-Na_(2/3)Ni_(2/3)Te_(1/3)O_(2) cathode that is stable in ambient air with an average operating voltage of~3.8 V,demonstrating excellent cycling stability with a capacity retention of more than 92.7%after 500 cycles at 20 mA g^(-1) and good rate capability with 91.9%capacity utilization at 500 mA g^(-1) with respect to capacity at 5 mA g^(-1) between 2.0 and 4.0 V.When the upper cutoff voltage is increased to 4.4 V,P2-Na_(2/3)Ni_(2/3)Te_(1/3)O_(2) delivers a reversible capacity of 71.9 mAh g^(-1) and retains 91.8%of the capacity after 100 cycles at 20 mA g^(-1).The charge compensation during charge/discharge is mainly due to the redox couple of Ni^(2+)/Ni^(3+)in the host with a small amount of contribution from oxygen.The stable structure of the material without phase transformation and with small volume change during charge-discharge allows it to give excellent cycle performance especially when the upper cutoff voltage is not higher than 4.2 V.
基金supported by the Special Project for the Central Government to Guide Local Technological Development (GUIKE ZY20198008)the Guangxi Technology Base and talent Subject (GUIKE AD20238012,AD20297086)+5 种基金the Natural Science Foundation of Guangxi Province (2021GXNSFDA075012)the National Natural Science Foundation of China (51902108,52104298,22169004)the National Natural Science Foundation of China (U20A20249)the Regional Innovation and Development Joint Fundthe Guangxi Innovation Driven Development Subject (GUIKE AA19182020,19254004)the Special Fund for Guangxi Distinguished Expert。
文摘Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries.