期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influence of nitrogen-alloying on the tempering properties of the martensitic stainless steel 00Cr13Ni4Mo 被引量:1
1
作者 MA Yongzhu QIN Bin CHEN Xu GU Jiaqing 《Baosteel Technical Research》 CAS 2010年第1期56-59,共4页
The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of t... The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of the tensile and corrosion tests show the strength,the ductility,and the pitting corrosion resistance of S13 -4N are higher, lower and poorer than those of S13 -6 respectively, when tempered at a temperature below 550 ℃and vice versa when the tempering temperature is higher than 550℃. The results of the X-ray diffraction (XRD) and the electron backscattered diffraction (EBSD) analyses reveal that inversed austenite appears at 550℃ and the amount of it peaks at 600 ℃ with the best ductility. And the total amount of the inversed austenite in S13 -6 is more than that in S13 -4N in different forms. Nitrogen performs better in terms of stabilizing inversed austenite while nickel is more favorable for forming inversed austenite, the amount and stability of which affect the ductility remarkably. The reason for the embrittlement of S13 -4N at 450℃ can be the result of carbide and nitride precipitating at grain boundaries. 展开更多
关键词 martensitic stainless steel 00Cr13Ni4Mo nitrogen alloying tempering property
下载PDF
High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys 被引量:15
2
作者 LI Hua-bing JIANG Zhou-hua SHEN Ming-hui YOU Xiang-mi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第3期63-68,共6页
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas... A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite. 展开更多
关键词 nitrogen gas alloying nitrided ferroalloy high nitrogen austenitic stainless steel vacuum induction melting electroslag remelting
下载PDF
Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties 被引量:11
3
作者 Hua-bing Li Zhou-hua Jiang Yang Cao Zu-rui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期387-392,共6页
A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then... A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties. 展开更多
关键词 high nitrogen austenitic stainless steels electroslag remelting nitrogen alloying ductile-brittle transition pitting corrosion resistance
下载PDF
Influence of Temperature on Nitrogen Ion Implantation of Ti6Al4V Alloy
4
作者 赵青 郑永真 +3 位作者 莫志涛 唐德礼 童洪辉 耿漫 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第2期721-726,共6页
in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. U... in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. Using the Plasma Source ion Implantation (PSII) device, specimens of Ti6Al4V alloy were implanted at elevated temperatures, using the ion flux as the heating source. Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), micro-hardness measurements and pin-on-disk wearing tester were utilized to evaluate the surface property improvements. The thickness of the implanted layer increased by about an order of magnitude when the temperature was elevated from 100 to 600℃. Higher surface hardness and wearing resistance was also obtained in implantation under higher temperature. XRD image showed the presence of titanium nitrides on the implanted surface. 展开更多
关键词 TIN Influence of Temperature on nitrogen Ion Implantation of Ti6Al4V Alloy
下载PDF
Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
5
《Science Foundation in China》 CAS 2017年第3期12-12,共1页
Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and H... Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of 展开更多
关键词 alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部