期刊文献+
共找到93,023篇文章
< 1 2 250 >
每页显示 20 50 100
Sources of particulate organic matter in the Chukchi and Siberian shelves: clues from carbon and nitrogen isotopes 被引量:2
1
作者 Renming Jia Xinyue Mu +6 位作者 Min Chen Jing Zhu Bo Wang Xiaopeng Li A S Astakhov Minfang Zheng Yusheng Qiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第9期96-108,共13页
The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial... The stable isotopic composition(δ13C andδ15N)and carbon/nitrogen ratio(C/N)of particulate organic matter(POM)in the Chukchi and East Siberian shelves from July to September,2016 were measured to evaluate the spatial variability and origin of POM.Theδ13CPOC values were in the range of−29.5‰to−17.5‰with an average of−25.9‰±2.0‰,and theδ15NPN values ranged from 3.9‰to 13.1‰with an average of 8.0‰±1.6‰.The C/N ratios in the East Siberian shelf were generally higher than those in the Chukchi shelf,while theδ13C andδ15N values were just the opposite.Abnormally low C/N ratios(<4),lowδ13CPOC(almost−28‰)and highδ15NPN(>10‰)values were observed in the Wrangel Island polynya,which was attributed to the early bloom of small phytoplankton.The contributions of terrestrial POM,bloom-produced POM and non-bloom marine POM were estimated using a three end-member mixing model.The spatial distribution of terrestrial POM showed a high fraction in the East Siberian shelf and decreased eastward,indicating the influence of Russian rivers.The distribution of non-bloom marine POM showed a high fraction in the Chukchi shelf with the highest fraction occurring in the Bering Strait and decreased westward,suggesting the stimulation of biological production by the Pacific inflow in the Chukchi shelf.The fractions of bloom-produced POM were highest in the winter polynya and gradually decreased toward the periphery.A negative relationship between the bloom-produced POM and the sea ice meltwater inventory was observed,indicating that the net sea ice loss promotes early bloom in the polynya.Given the high fraction of bloom-produced POM,the early bloom of phytoplankton in the polynyas may play an important role on marine production and POM export in the Arctic shelves. 展开更多
关键词 particulate organic matter carbon isotope nitrogen isotope Chukchi Shelf East Siberian Shelf POLYNYA
下载PDF
Carbon and nitrogen isotopes analysis and sources of organic matter in surface sediments from the Sanggou Bay and its adjacent areas, China 被引量:7
2
作者 XIA Bin CUI Yi +3 位作者 CHEN Bijuan CUI Zhengguo QU Keming MA Feifei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第12期48-57,共10页
Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, whi... Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, which is characterized by high-density shellfish and seaweed aquaculture, the grain size, organic carbon(OC), total nitrogen(TN), carbon and nitrogen isotopic composition(δ13C and δ15N) of organic matter in the surface sediment were determined. The results showed that, in August, sedimentary OC and TN ranged from 0.17% to 0.76% and 0.04% to 0.14%, respectively. In November, OC and TN ranged from 0.23% to 0.87% and 0.05% to 0.14%, respectively. There was a significant positive correlation between OC and TN(R=0.98, P<0.0001), indicating that OC and TN were homologous. In August, the δ13C and δ15N of organic matter varied from-23.06‰ to-21.59‰ and 5.10‰ to 6.31‰, respectively. In November, δ13C and δ15N ranged from-22.87‰ to-21.34‰ and 5.13‰ to 7.31‰, respectively. This study found that the major sources of sedimentary organic matter were marine shellfish biodeposition, seaweed farming, and soil organic matter. Using a three-end-member mixed model, we estimated that the dominant source of sedimentary organic matter was shellfish biodeposition, with an average contribution rate of 65.53% in August and 43.00% in November. Thus, shellfish farming had a significant influence on the coastal carbon cycle. 展开更多
关键词 沉积有机质 表层沉积物 氮同位素 桑沟湾 同位素分析 邻近地区 定碳 中国
下载PDF
Organic carbon and nitrogen isotopes in surface sediments from the western Arctic Ocean and their implications for sedimentary environments 被引量:4
3
作者 CHEN Zhihua SHI Xuefa +2 位作者 CAI Deling HAN Yibing YANG Zuosheng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第5期39-54,共16页
关键词 北冰洋西北部海域 海面沉积物 有机碳氮同位素 沉积环境 生物硅 楚科奇海
下载PDF
Evaluation on nitrogen isotopes analysis in high-C/N-ratio plants using elemental analyzer/isotope ratio mass spectrometry 被引量:2
4
作者 胡婧 刘卫国 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第2期36-39,共4页
Elemental analyzer/isotope ratio mass spectrometry(EA/TRMS) has been widely applied to analyze the^(15)N/^(14)N isotope composition(δ^(15)N) of plants and soils,but the δ^(15)N results may be inaccurate due to incom... Elemental analyzer/isotope ratio mass spectrometry(EA/TRMS) has been widely applied to analyze the^(15)N/^(14)N isotope composition(δ^(15)N) of plants and soils,but the δ^(15)N results may be inaccurate due to incomplete combustion of the high-C/N-ratio plant samples by EA.Therefore,it is necessary to develop a method to solve the problem of imperfect combustion.In this study,we used two methods:1) adding copper oxide powder to the samples,and 2) increasing the O_2 flow(from 100 mL min^(-1) to 200 mL min^(-1)) for the auto sampler inlet purge line of the EA.The δ^(15)N values of the plant samples became more positive and tended to be stable after complete combustion.Also,the required blank samples for each plant sample decreased with increasing amount of the added CuO powder.However,at 200 mL min^(-1) of the oxygen flow in the EA,complete combustion could not be achieved without adding copper oxide,but this was done with decreased amount of CuO powder.Therefore,mixing cupric oxide into the high-C/N-ratio samples was an efficient,simple and convenient way to solve the problem of imperfect combustion in the EA. 展开更多
关键词 同位素分析 植物样品 元素分析仪 质谱仪 同位素比值 不完全燃烧 评价 铜粉末
下载PDF
Sources and transformations of nitrite in the Amundsen Sea in summer 2019 and 2020 as revealed by nitrogen and oxygen isotopes
5
作者 Yangjun Chen Jinxu Chen +4 位作者 Yi Wang You Jiang Minfang Zheng Yusheng Qiu Min Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期16-24,共9页
In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of n... In this study,the nitrogen and oxygen isotope compositions of nitrite in the upper 150 m water column of the Amundsen Sea in the summer of 2019 and 2020 were measured to reveal the distribution and transformation of nitrite in the euphotic zone of the Southern Ocean.We found that primary nitrite maxima(PNMs)are widely present in the Amundsen Sea,where the depth of occurrence deepens from east to west and nitrite concentrations increases.Evidence from dual isotopes suggests that the formation of PNMs in all regions of the Amundsen Sea is dominated by ammonia oxidation.More importantly,the nitrogen and oxygen isotope compositions of nitrite in the Amundsen Sea mixed layer are abnormal,and their depth profiles are mirror symmetrical.Isotopic anomalies exhibit spatial variations,with central surface water having the lowest nitrogen isotope composition(−89.9‰±0.2‰)and western surface water having the highest oxygen isotope composition(63.3‰±0.3‰).Isotopic exchange reaction between nitrate and nitrite is responsible for these isotope anomalies,as both nitrogen and oxygen isotopes have large isotopic fractionation and opposite enrichment effects.This proves that isotopic exchange reaction operates extensively in different regions of the Amundsen Sea.Our study highlights the unique role of dual isotopes of nitrite in deepening the understanding of nitrogen cycle.Further studies on ammonia oxidation and isotopic exchange between nitrate and nitrite are warranted in the future to understand their roles in the nitrogen cycle in the Southern Ocean. 展开更多
关键词 nitrogen isotope oxygen isotope NITRITE Amundsen Sea
下载PDF
Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts:a review
6
作者 Jinchen Li Mengmeng Yuan +3 位作者 Nan Meng Hehe Li Jinyuan Sun Baoguo Sun 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期556-567,共12页
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu... Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research. 展开更多
关键词 Non-Saccharomyces yeasts nitrogen Fermentation kinetics nitrogen preference Wine aroma
下载PDF
Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress andAbiotic Challenges
7
作者 Muhammad Farhan Manda Sathish +10 位作者 Rafia Kiran Aroosa Mushtaq Alaa Baazeem Ammarah Hasnain Fahad Hakim Syed Atif Hasan Naqvi Mustansar Mubeen Yasir Iftikhar Aqleem Abbas Muhammad Zeeshan Hassan Mahmoud Moustafa 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期581-609,共29页
Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unvei... Plant growth and resilience to abiotic stresses,such as soil salinity and drought,depend intricately on nitrogen metabolism.This review explores nitrogen’s regulatory role in plant responses to these challenges,unveiling a dynamic interplay between nitrogen availability and abiotic stress.In the context of soil salinity,a nuanced rela-tionship emerges,featuring both antagonistic and synergistic interactions between salinity and nitrogen levels.Salinity-induced chlorophyll depletion in plants can be alleviated by optimal nitrogen supplementation;however,excessive nitrogen can exacerbate salinity stress.We delve into the complexities of this interaction and its agri-cultural implications.Nitrogen,a vital element within essential plant structures like chloroplasts,elicits diverse responses based on its availability.This review comprehensively examines manifestations of nitrogen deficiency and toxicity across various crop types,including cereals,vegetables,legumes,and fruits.Furthermore,we explore the broader consequences of nitrogen products,such as N_(2)O,NO_(2),and ammonia,on human health.Understand-ing the intricate relationship between nitrogen and salinity,especially chloride accumulation in nitrate-fed plants and sodium buildup in ammonium-fed plants,is pivotal for optimizing crop nitrogen management.However,prudent nitrogen use is essential,as overapplication can exacerbate nitrogen-related issues.Nitrogen Use Effi-ciency(NUE)is of paramount importance in addressing salinity challenges and enhancing sustainable crop productivity.Achieving this goal requires advancements in crop varieties with efficient nitrogen utilization,pre-cise timing and placement of nitrogen fertilizer application,and thoughtful nitrogen source selection to mitigate losses,particularly urea-based fertilizer volatilization.This review article delves into the multifaceted world of plant nitrogen metabolism and its pivotal role in enabling plant resilience to nutritional stress and abiotic challenges.It offers insights into future directions for sustainable agriculture. 展开更多
关键词 Synthetic nitrogen nitrogen signaling sustainable agriculture EUTROPHICATION AMMONIUM NITRATE
下载PDF
Determination of Carbon and Nitrogen Isotope Fractions in Asparagine, Aspartic Acid, Threonine and Methionine
8
作者 Lamzira Pharulava Levani Eliashvili +1 位作者 Vakhtang Betlemidze Bachana Sulava 《American Journal of Analytical Chemistry》 CAS 2024年第1期30-42,共13页
The nomenclature for compounds that are modified with isotopes is growing every day. Compounds can be modified with isotopes either individually, in a functional group or groups, or completely with all atomic centers ... The nomenclature for compounds that are modified with isotopes is growing every day. Compounds can be modified with isotopes either individually, in a functional group or groups, or completely with all atomic centers of the element. This diversity of isotope-modified compounds increases the range of researches that can be studied using them. Compounds modified with isotopes of carbon-13 or nitrogen-15 can be converted into carbon monoxide, carbon dioxide and molecular nitrogen. Currently, only the average value of carbon-13 or nitrogen-15 isotopes can be determined. However, by directly determining the atomic share of these isotopes in organic compounds modified with isotopes, information about the isotopic centers of the element can be obtained. The atomic fraction of an element is defined as a single carbon or nitrogen isotope-modified center or centers, or all centers that are isotope-modified with that element at the same time. Carbon-13 or nitrogen-15 isotopes’ atomic fraction can be determined molecularly or with fragment ions of different elemental content, or both. This makes the method self-verifying, increasing the accuracy and reliability of the results obtained. Amino acids, such as asparagine, aspartic acid, methionine, and threonine, are essential for the human body. This proposed method of isotopic analysis will increase the possibilities for scientific research using these compounds. 展开更多
关键词 ASPARAGINE Aspartic Acid THREONINE METHIONINE Mass Spectrometer Isotopic Analysis Atomic Share
下载PDF
Genetic and Agronomic Parameter Estimates of Growth, Yield and Related Traits of Maize (Zea mays L.) under Different Rates of Nitrogen Fertilization
9
作者 Prince Emmanuel Norman Lansana Kamara +6 位作者 Aloysius Beah Kelvin Sahr Gborie Francess Sia Saquee Sheku Alfred Kanu Fayia Augustine Kassoh Yvonne Sylvia Gloria Ethel Norman Abdul Salaam Kargbo 《American Journal of Plant Sciences》 CAS 2024年第4期274-291,共18页
This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in... This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize. 展开更多
关键词 nitrogen Rates Genetic and Agronomic Estimates Introduced Genotypes Grain Yield Zea mays
下载PDF
Rising utilization of stable isotopes in tree rings for climate change and forest ecology
10
作者 Ru Huang Chenxi Xu +3 位作者 Jussi Grießinger Xiaoyu Feng Haifeng Zhu Achim Bräuning 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期103-116,共14页
Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive re... Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field. 展开更多
关键词 Tree rings Stable isotopes Web of Science BIBLIOMETRIC
下载PDF
Plasma nitrogen fixation system with dual-loop enhancement for improved energy efficiency and its efficacy for lettuce cultivation
11
作者 韩泽阳 张梦雪 +8 位作者 张頔 何欣 井天军 葛知轩 李玉鸽 朱童 任云鸿 仲崇山 季方 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期82-92,共11页
Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this ... Plasma nitrogen fixation(PNF)has been emerging as a promising technology for greenhouse gasfree and renewable energy-based agriculture.Yet,most PNF studies seldom address practical application-specific issues.In this work,we present the development of a compact and automatic PNF system for on-site agricultural applications.The system utilized a gliding-arc discharge as the plasma source and employed a dual-loop design to generate NO_(x)from air and water under atmospheric conditions.Experimental results showed that the system with a dualloop design performs well in terms of energy costs and production rates.Optimal operational parameters for the system were determined through experimentation,resulting in an energy cost of 13.9 MJ mol^(-1)and an energy efficiency of 16 g kWh^(-1)for NO_(3)^(-)production,respectively.Moreover,the concentration of exhausted NO_(x)was below the emission standards.Soilless lettuce cultivation experiments demonstrated that NO_(x)^(-)produced by the PNF system could serve as liquid nitrate nitrogen fertilizer.Overall,our work demonstrates the potential of the developed PNF system for on-site application in the production of green-leaf vegetables. 展开更多
关键词 plasma nitrogen fixation gliding arc soilless cultivation LETTUCE
下载PDF
Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland
12
作者 Xu Chen Haining Lu +4 位作者 Zhengru Ren Yuqiu Zhang Ruoxuan Liu Yunhai Zhang Xingguo Han 《Plant Diversity》 SCIE CAS CSCD 2024年第2期256-264,共9页
Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear wh... Tall clonal grasses commonly display competitive advantages with nitrogen(N)enrichment.However,it is currently unknown whether the height is derived from the vegetative or reproductive module.Moreover,it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization,and determines species diversity.In this study,the impacts on clonal grasses were studied in a field experiment employing two frequencies(twice a year vs.monthly)crossing with nine N addition rates in a temperate grassland,China.We found that the N addition decreased species frequency and increased extinction probability,but did not change the species colonization probability.A low frequency of N addition decreased species frequency and colonization probability,but increased extinction probability.Moreover,we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions.The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity,suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition.Overall,this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment. 展开更多
关键词 ANPP Biodiversity Clonal grass COLONIZATION EXTINCTION nitrogen addition frequency
下载PDF
Geochemistry, zircon U–Pb geochronology, and Hf isotopes of S-type granite in the Baoshan block, constraints on the age and evolution of the Proto-Tethys
13
作者 Jianjun Zhang Chuanlong Mou +3 位作者 Chendong Liu Yong Zhang Ting Chen Hualiang Li 《Acta Geochimica》 EI CAS CSCD 2024年第1期40-58,共19页
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali... Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge. 展开更多
关键词 Baoshan block Early Paleozoic GRANITE GEOCHEMISTRY ZIRCON GEOCHRONOLOGY Hf isotope
下载PDF
Proteomic response of Phaeocystis globosa to nitrogen limitation
14
作者 Haisu LIU Ruiwang WEI +2 位作者 Qiangyong LEI Lei CUI Songhui LÜ 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期141-149,共9页
Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,... Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,the ecophysiology of P.globosa has been investigated by numerous studies.However,the proteomic response of P.globosa to nitrogen depletion remains largely unknown.We compared four protein preparation methods of P.globosa for two-dimensional electrophoresis(2-DE)(Urea/Triton X-100 with trichloroacetic acid(TCA)/acetone precipitation;TCA/acetone precipitation;Radio Immuno Precipitation Assay(RIPA)with TCA/acetone precipitation;and Tris buffer).Results show that the combination of RIPA with TCA/acetone precipitation had a clear gel background and showed the best protein spot separation effect,based on which the proteomic response to nitrogen depletion was studied using 2-DE.In addition,we identified six differentially expressed proteins whose relative abundance increased or decreased more than 1.5-fold(P<0.05).Most proteins could not be identified,which might be attributed to the lack of genomic sequences of P.globosa.Under nitrogen limitation,replication protein-like,RNA ligase,and sn-glycerol-3-phosphate dehydrogenase were reduced,which may decrease the DNA replication level and ATP production in P.globosa cells.The increase of endonucleaseⅢand transcriptional regulator enzyme may affect the metabolic and antioxidant function of P.globosa cells and induce cell apoptosis.These findings provide a basis for further proteomic study of P.globosa and the optimization of protein preparation methods of marine microalgae. 展开更多
关键词 Phaeocystis globosa nitrogen limitation proteomic response two-dimensional electrophoresis
下载PDF
Effects of dense planting patterns on photosynthetic traits of different vertical layers and yield of wheat under different nitrogen rates
15
作者 Cuicun Wang Ke Zhang +9 位作者 Qing Liu Xiufeng Zhang Zhikuan Shi Xue Wang Caili Guo Qiang Cao Yongchao Tian Yan Zhu Xiaojun Liu Weixing Cao 《The Crop Journal》 SCIE CSCD 2024年第2期594-604,共11页
A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(... A two-year field experiment was conducted to measure the effects of densification methods on photosynthesis and yield of densely planted wheat.Inter-plant and inter-row distances were used to define ratefixed pattern(RR)and row-fixed pattern(RS)density treatments.Meanwhile,four nitrogen(N)rates(0,144,192,and 240 kg N ha-1,termed N0,N144,N192,and N240)were applied with three densities(225,292.5,and 360×10^(4)plants ha^(-1),termed D225,D292.5,and D360).The wheat canopy was clipped into three equal vertical layers(top,middle,and bottom layers),and their chlorophyll density(Ch D)and photosynthetically active radiation interception(FIPAR)were measured.Results showed that the response of Ch D and FIPAR to N rate,density,and pattern varied with different layers.N rate,density,and pattern had significant interaction effects on Ch D.The maximum values of whole-canopy Ch D in the two seasons appeared in N240 combined with D292.5 and D360 under RR,respectively.Across two growing seasons,FIPAR values of RR were higher than those of RS by 29.37%for the top layer and 5.68%for the middle layer,while lower than those of RS by 20.62%for the bottom layer on average.With a low N supply(N0),grain yield was not significantly affected by density for both patterns.At N240,increasing density significantly increased yield under RR,but D360 of RS significantly decreased yield by 3.72%and 9.00%versus D225 in two seasons,respectively.With an appropriate and sufficient N application,RR increased the yield of densely planted wheat more than RS.Additionally,the maximum yield in two seasons appeared in the combination of D360 with N144 or N192 rather than of D225 with N240 under both patterns,suggesting that dense planting combined with an appropriate N-reduction application is feasible to increase photosynthesis capacity and yield. 展开更多
关键词 Chlorophyll density Densification method nitrogen Photosynthetically active radiation INTERCEPTION WHEAT
下载PDF
Could natural phytochemicals be used to reduce nitrogen excretion and excreta‑derived N_(2)O emissions from ruminants?
16
作者 Yuchao Zhao Ming Liu +1 位作者 Linshu Jiang Leluo Guan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期490-508,共19页
Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide... Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food.However,ruminant excreta is a significant source of nitrous oxide(N_(2)O),a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide.Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen(N)utilization and decrease N_(2)O emissions from the excreta of ruminants.Dietary inclusion of tannins can shift more of the excreted N to the feces,alter the urinary N composition and consequently reduce N_(2)O emissions from excreta.Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion.In grazed pastures,large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces.If inhibitory compounds are excreted in the urine,they would be directly applied to the urine patch to reduce nitrification and subsequent N_(2)O emissions.The phytochemicals’role in sustainable ruminant production is undeniable,but much uncertainty remains.Inconsistency,transient effects,and adverse effects limit the effectiveness of these phytochemicals for reducing N losses.In this review,we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N_(2)O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N_(2)O emissions. 展开更多
关键词 nitrogen metabolism Nitrous oxide Plant bioactive compounds RUMINANT Urine patches
下载PDF
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
17
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang Zhongming Fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE NITRATE transporter nitrogen utilization efficiency
下载PDF
Nitrogen mineralization in the oldest climax communities in the eastern Mediterranean region
18
作者 Fatma Selcen Sakar Gürcan Güleryüz 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期213-228,共16页
In this study,we investigated how tree species affect N mineralization in connection to some soil properties and seconder metabolite levels of litter,in the soil of the old-est native forest communities.In the oldest ... In this study,we investigated how tree species affect N mineralization in connection to some soil properties and seconder metabolite levels of litter,in the soil of the old-est native forest communities.In the oldest pure communi-ties of Pinus nigra(PN),Fagus orientalis(FO),and Abies bornmuelleriana(AB)in the mountain range of Mount Uludağ,Bursa,Turkey,annual net yield and N mineraliza-tion in the 0-5-and 5-20-cm soil layers were determined in a field incubation study over 1 year.Sampling locations were chosen from 1300 to 1600 m a.s.l.,and moisture content(%),pH,water-holding capacity(%),organic C,total N,and C/N ratio,and annual net mineral N yield of the soil and hydro-lyzed tannic acid and total phenolic compounds in litter were compared for these forest communities.F.orientalis had the highest annual net Nmin yield(43.9±4.8 kg ha^(-1) a^(-1)),P.nigra the lowest(30.5±4.2 kg ha^(-1) a^(-1)).Our findings show that in the oldest forest ecosystems,the seasonal soil moisture content and tree species play an essential role in N cycling and that hydrolyzed tannic acids and total phenolic compounds effectively control N turnover.Tannic acid and total phenolics in the litter were found to inhibit nitrification,but total phenolics were found to stimulate ammonification. 展开更多
关键词 Oldest forest communities nitrogen mineralization NITRIFICATION Tannic acid Total phenolic LITTER
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
19
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system CARBON nitrogen PHOSPHORUS tea quality path analysis
下载PDF
Synergistic effects of planting density and nitrogen fertilization on chlorophyll degradation and leaf senescence after silking in maize
20
作者 Tianqiong Lan Lunjing Du +9 位作者 Xinglong Wang Xiaoxu Zhan Qinlin Liu Gui Wei Chengcheng Lyu Fan Liu Jiaxu Gao Dongju Feng Fanlei Kong Jichao Yuan 《The Crop Journal》 SCIE CSCD 2024年第2期605-613,共9页
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act... Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield. 展开更多
关键词 DENSITY nitrogen fertilization Leaf senescence Chlorophyll-degrading enzyme Logistic model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部