Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by...Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by XRD,DSC,TEM,etc.It is found that nanome ter micro-porous crystal is well-crystallized,well-degree of dispers ion and smaller than 100nm in diameter.More over,tri-ethylamine can be used to b e a ideal template in this synthesis,and the first time it is reported in our co untry.The synthesis mechanism is also preliminary discussed in this pap er.展开更多
SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewid...SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.展开更多
The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyan...The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.展开更多
文摘Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by XRD,DSC,TEM,etc.It is found that nanome ter micro-porous crystal is well-crystallized,well-degree of dispers ion and smaller than 100nm in diameter.More over,tri-ethylamine can be used to b e a ideal template in this synthesis,and the first time it is reported in our co untry.The synthesis mechanism is also preliminary discussed in this pap er.
基金Basic Research for Application of Sichuan Province(No.05JY029-071-2)
文摘SMnxZn1-xFe2O4 (x=1,0.9,0.8,0.7,0.6,0.5,0.25,0) nanoparticles were prepared by ball-milling hydrothermal and investigated by X-ray diffraction, DTG and TEM. Nanocrystallite grain size was determined by X-ray linewidth to be from 63 A to 274 A. The thermal properties indicate absorbed water still remain at low temperature, crystalline wate will be decomposed from 230 ℃ to 260 ℃, partial Mn^2+ will be oxidized near 730 ℃. TEM shows the ferrite particles pocess a spherical morphology and uniform nanosize.
基金Supported by the Fuling Shale Gas Environmental Exploration Technology of National Science and Technology Special Project(No.2016ZX05060)the Demonstration of Integrated Management of Rocky Desertification and Enhancement of Ecological Service Function in Karst Peak-cluster Depression(No.2016YFC0502400)National Natural Science Foundation of China(No.51709254)
文摘The modification of graphitic carbon nitride can significantly improve the photocatalytic performance of graphitic carbon nitride(g-C3N4).Fe2O3/nitrogen-deficient g-C3N4-x composite catalysts were prepared with dicyandiamide as the precursor and Fe3+doped in this study.The composite catalysts were characterized by XRD,SEM,FT-IR,XPS and photocurrent measurements.Close interaction occurred between Fe2O3 and nitrogen deficient g-C3N4-x,more photogenerated electrons were created and effectively separated from the holes,resulting in a decrease of photocarrier recombination,and thus enhancing the photocurrent.Photocatalytic performance experiments showed that Fe2O3/nitrogen deficient g-C3N4-x could utilize lowenergy visible light more efficiently than pure g-C3N4,and the removal rate was 92%in 60 minutes.
基金Postdoctoral Science Foundation of China(2012M520605)Research Foundation of Taiyuan University of Technology(tyut-rc201369a,2013Z040)+1 种基金Open Foundation of State Key Laboratory of Coal Conversion(09-102)Natural Science Foundation of Shanxi Province(2013011042-1)