In the hydrological year 2022/2023,the glaciers in the Qilian Mountains experienced unprecedented mass loss.The glacier-wide mass balance was-1,188 mm w.e.,in contrast to-350 mm of average mass balance since 1990 over...In the hydrological year 2022/2023,the glaciers in the Qilian Mountains experienced unprecedented mass loss.The glacier-wide mass balance was-1,188 mm w.e.,in contrast to-350 mm of average mass balance since 1990 over the Bailanghe Glacier No.12 in the middle of Qilian Mountains.The temperature during 2022–2023 reached the highest value ever recorded,second only to 2022,while at the same time the precipitation amount was less compared to other year since 2000,which together led to the strongest glacier mass loss during 2022–2023.The atmospheric circulation analysis shows that the high temperature in the Qilian Mountains in 2023 was jointly caused by the Arctic air mass and East Asian monsoon.展开更多
Cooperative Reconfiguration for a Reconfigurable Mobile Robot LIU Tonglin, WU Chengdong, LI Bin, LIU Jinguo (1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, She...Cooperative Reconfiguration for a Reconfigurable Mobile Robot LIU Tonglin, WU Chengdong, LI Bin, LIU Jinguo (1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Graduate School, Chinese Academy of Sciences, Beijing 100049, China; 3. School of Information Science & Engineering, Northeast University, Shenyang 110004, China)Abstract: A main characteristic of the reconfigurable mobile robot AMOEBA-1 is that it has diverse configurations, but some reconfigurations are difficult to realize under the influence of ground conditions. A cooperative reconfiguration method is proposed to reduce reconfiguration resistance and enhance the adaptability of the robot to the environment. The mathematical model is established correspondingly. The kinematics and mechanical properties of each section of the robot are analyzed. A part of resistance is transformed into active force of reconfiguration, and transforms are actualized among five specific configurations. Further, the linearization of model based on a perturbation analysis method is used to reduce the computational complexity. Finally, an evaluation criterion is proposed for AMOEBA-I's cooperative reconfiguration performance. The validity of the cooperative reconfiguration method is proved by simulations and experiments.展开更多
基金supported by the Science Fund for Creative Research Groups of Gansu Province (Grant No.23JRRA567)the National Natural Science Foundation of China (42101139,42071018)+1 种基金Meteorological Administration Climate Change Special Program (CMA-CCSP:QBZ202308)CAS"Light of West China"Program。
文摘In the hydrological year 2022/2023,the glaciers in the Qilian Mountains experienced unprecedented mass loss.The glacier-wide mass balance was-1,188 mm w.e.,in contrast to-350 mm of average mass balance since 1990 over the Bailanghe Glacier No.12 in the middle of Qilian Mountains.The temperature during 2022–2023 reached the highest value ever recorded,second only to 2022,while at the same time the precipitation amount was less compared to other year since 2000,which together led to the strongest glacier mass loss during 2022–2023.The atmospheric circulation analysis shows that the high temperature in the Qilian Mountains in 2023 was jointly caused by the Arctic air mass and East Asian monsoon.
文摘Cooperative Reconfiguration for a Reconfigurable Mobile Robot LIU Tonglin, WU Chengdong, LI Bin, LIU Jinguo (1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Graduate School, Chinese Academy of Sciences, Beijing 100049, China; 3. School of Information Science & Engineering, Northeast University, Shenyang 110004, China)Abstract: A main characteristic of the reconfigurable mobile robot AMOEBA-1 is that it has diverse configurations, but some reconfigurations are difficult to realize under the influence of ground conditions. A cooperative reconfiguration method is proposed to reduce reconfiguration resistance and enhance the adaptability of the robot to the environment. The mathematical model is established correspondingly. The kinematics and mechanical properties of each section of the robot are analyzed. A part of resistance is transformed into active force of reconfiguration, and transforms are actualized among five specific configurations. Further, the linearization of model based on a perturbation analysis method is used to reduce the computational complexity. Finally, an evaluation criterion is proposed for AMOEBA-I's cooperative reconfiguration performance. The validity of the cooperative reconfiguration method is proved by simulations and experiments.