The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differen...The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differential form or the integral form. A method was provided so as toobtain the parameters characterizing the crystallization rate and mechanism from DSC curves withseveral constant heating or cooling rates. The rate constants of crystallization obtained from bothisothermal and nonisothermal curves of poly(ethylene terephthalate)were compared.展开更多
A study concerning the effect of vibration on the crystal structure and morphology for isotactic polypropylene(iPP) was conducted. The crystallite size, crystal structure and crystallinity of iPP under or without vibr...A study concerning the effect of vibration on the crystal structure and morphology for isotactic polypropylene(iPP) was conducted. The crystallite size, crystal structure and crystallinity of iPP under or without vibration treatment were investigated by means of differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD). The results reveal that the crystallinity of the vibrated samples decreases at a high cooling rate, but it remains constant at a low cooling rate because of the chain relaxation of iPP. It has been found that vibration obviously increases the content of β-form of crystal phase and the amount of β-crystal mainly depends on the vibration amplitude.展开更多
Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)(PBAT) synthesized via direct esterification and polycondensation reactions was investigated by the differential scanning calorimetry(DS...Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)(PBAT) synthesized via direct esterification and polycondensation reactions was investigated by the differential scanning calorimetry(DSC).The Avrami equation modified by Jeziorny and the Z.S.Mo equation were employed to describe the non-isothermal crystallization kinetics of copolyester samples.The test results showed that the Avrami equation was successful in describing nonisothermal crystallization process of PBAT copolyesters.PBAT copolyester could give birth to secondary crystallization.The crystallization parameter(Zc) increased with an increasing cooling rate and the Avrami exponent(n) was around 2.3.For a given cooling rate,the value of Zc demonstrated a sagging trend with an increase in adipic acid(AA) content.The equation proposed by Z.S.Mo was successful in describing the nonisothermal crystallization kinetics of PBAT copolyesters.展开更多
Binary alloy samples consisting of poly(phenylene sulfide) (PPS)/poly(ethylene terephthalate-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) blend were prepared by the melt blending technology using a twin...Binary alloy samples consisting of poly(phenylene sulfide) (PPS)/poly(ethylene terephthalate-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) blend were prepared by the melt blending technology using a twin-screw extruder. The nonisothermal crystallization kinetics of binary alloys made of poly(phenylene sulfide) (PPS) and poly(ethyleneco-cyclohexane 1,4-dimethanol terephthalate) (PETG) was studied by the differential scanning calorimetry (DSC) at different cooling rates. The test results revealed that the addition of PETG could shift the crystallization temperature of PPS toward the high-temperature direction. The nonisothermal crystallization kinetic parameters of the PPS/PETG alloy samples were calculated by the methods proposed by Avrami and Mo. Test results demonstrated that the PPS/PETG alloy could give birth to apparent secondary crystallization. The value of Avrami exponent was lower relatively, while Mo's method was more suited to the nonisothermal crystallization process of the PPS/PETG alloy.展开更多
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within ...Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoeonversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.展开更多
The kinetics of nonisothermal and isothermal crystallization of metallocene catalyzed and conventional polyethylenes has been studied by differential scanning calorimetry. Using Avrami equation, Ozawa theory and Mo Zh...The kinetics of nonisothermal and isothermal crystallization of metallocene catalyzed and conventional polyethylenes has been studied by differential scanning calorimetry. Using Avrami equation, Ozawa theory and Mo Zhishen method, the experimental data have been analyzed. It is shown that metallocene polyethylene possesses a higher rate of crystallization due to a higher stereoregularity of its molecular chains. Moreover, they have different nonisothermal crystallization mechanisms and identical isothermal crystallization mechanisms.展开更多
The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crystallization kinetics and nonisothermal crystallization behavior of PA6 has been studied by means of DSC. The results sho...The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crystallization kinetics and nonisothermal crystallization behavior of PA6 has been studied by means of DSC. The results show that with the introduction of a small amount of UFAPR, the crystallization rate of PA6 can be increased obviously, and the crystallization temperature range can be augmented and the crystallite size distribution of the crystal can be narrowed down. The change of free energy perpendicular to the crystal nucleus, which has been calculated according to the Hoffman theory, is consistent with the result of Avrami′s equation. The unit surface free energy of the radial-developing crystal spherulite decreases while the crystallization rate of PA6 increases with the introduction of UFAPR. Meanwhile, it is shown by means of the polarizing microscope(PLM) that the crystal size drops down and the number of the crystal grains augments with the addition of UFAPR, which shows that UFAPR can function as a nucleating agent.展开更多
The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our...The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.展开更多
Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were s...Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC. The Avrami equation was used to analyze the isothermal crystallization process, while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model. The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers: on one hand, the interaction between branches (n-n interaction between PS branches, or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones, which hindered the crystallization process; on the other hand, the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism (caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length, which facilitated the crystallization process.展开更多
基金This work was supported by the Tianjin Youth Science Foundation for the 21th Century,Tianjin,China.
文摘The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differential form or the integral form. A method was provided so as toobtain the parameters characterizing the crystallization rate and mechanism from DSC curves withseveral constant heating or cooling rates. The rate constants of crystallization obtained from bothisothermal and nonisothermal curves of poly(ethylene terephthalate)were compared.
基金Supported by the National Science Funds for Distinguished Young Scholars(No.5 0 12 5 312 ) Special Funds for MajorState Basic Research Project of China(No.G19990 6 4 80 0 ) and Key Program of the National Natural Science Foundation ofChina(No.5 0 1
文摘A study concerning the effect of vibration on the crystal structure and morphology for isotactic polypropylene(iPP) was conducted. The crystallite size, crystal structure and crystallinity of iPP under or without vibration treatment were investigated by means of differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD). The results reveal that the crystallinity of the vibrated samples decreases at a high cooling rate, but it remains constant at a low cooling rate because of the chain relaxation of iPP. It has been found that vibration obviously increases the content of β-form of crystal phase and the amount of β-crystal mainly depends on the vibration amplitude.
文摘Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)(PBAT) synthesized via direct esterification and polycondensation reactions was investigated by the differential scanning calorimetry(DSC).The Avrami equation modified by Jeziorny and the Z.S.Mo equation were employed to describe the non-isothermal crystallization kinetics of copolyester samples.The test results showed that the Avrami equation was successful in describing nonisothermal crystallization process of PBAT copolyesters.PBAT copolyester could give birth to secondary crystallization.The crystallization parameter(Zc) increased with an increasing cooling rate and the Avrami exponent(n) was around 2.3.For a given cooling rate,the value of Zc demonstrated a sagging trend with an increase in adipic acid(AA) content.The equation proposed by Z.S.Mo was successful in describing the nonisothermal crystallization kinetics of PBAT copolyesters.
文摘Binary alloy samples consisting of poly(phenylene sulfide) (PPS)/poly(ethylene terephthalate-co-cyclohexane 1,4-dimethanol terephthalate) (PETG) blend were prepared by the melt blending technology using a twin-screw extruder. The nonisothermal crystallization kinetics of binary alloys made of poly(phenylene sulfide) (PPS) and poly(ethyleneco-cyclohexane 1,4-dimethanol terephthalate) (PETG) was studied by the differential scanning calorimetry (DSC) at different cooling rates. The test results revealed that the addition of PETG could shift the crystallization temperature of PPS toward the high-temperature direction. The nonisothermal crystallization kinetic parameters of the PPS/PETG alloy samples were calculated by the methods proposed by Avrami and Mo. Test results demonstrated that the PPS/PETG alloy could give birth to apparent secondary crystallization. The value of Avrami exponent was lower relatively, while Mo's method was more suited to the nonisothermal crystallization process of the PPS/PETG alloy.
基金supported by the National High Technology Research and Development Program of China (863 Program No. 2009AA03Z319)the National Natural Science Foundation of China (Nos. 30870633, 31000427)the Fundamental Research Funds for the Central Universities (DUT12JB09)
文摘Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoeonversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.
文摘The kinetics of nonisothermal and isothermal crystallization of metallocene catalyzed and conventional polyethylenes has been studied by differential scanning calorimetry. Using Avrami equation, Ozawa theory and Mo Zhishen method, the experimental data have been analyzed. It is shown that metallocene polyethylene possesses a higher rate of crystallization due to a higher stereoregularity of its molecular chains. Moreover, they have different nonisothermal crystallization mechanisms and identical isothermal crystallization mechanisms.
基金Supported by the National Natural Science Foundation of China( No.5 99730 0 3)
文摘The influence of Ultrafine Full-Vulcanized Acrylate Powdered Rubber(UFAPR) on the isothermal crystallization kinetics and nonisothermal crystallization behavior of PA6 has been studied by means of DSC. The results show that with the introduction of a small amount of UFAPR, the crystallization rate of PA6 can be increased obviously, and the crystallization temperature range can be augmented and the crystallite size distribution of the crystal can be narrowed down. The change of free energy perpendicular to the crystal nucleus, which has been calculated according to the Hoffman theory, is consistent with the result of Avrami′s equation. The unit surface free energy of the radial-developing crystal spherulite decreases while the crystallization rate of PA6 increases with the introduction of UFAPR. Meanwhile, it is shown by means of the polarizing microscope(PLM) that the crystal size drops down and the number of the crystal grains augments with the addition of UFAPR, which shows that UFAPR can function as a nucleating agent.
文摘The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.
基金financially supported by the National Natural Science Foundation of China for the projects(Nos.51233005 and 51073149)
文摘Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene (PP-g-PS) and polypropylene-g- poly(n-butyl acrylate) (PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC. The Avrami equation was used to analyze the isothermal crystallization process, while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model. The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers: on one hand, the interaction between branches (n-n interaction between PS branches, or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones, which hindered the crystallization process; on the other hand, the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism (caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length, which facilitated the crystallization process.