In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonline...In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonlinear industrial process. Kernel PCA (KPCA) is extensionof PCA and can be used for nonlinear feature analysis. A nonlinear data reconciliation method basedon KPCA is proposed. The basic idea of this method is that firstly original data are mapped to highdimensional feature space by nonlinear function, and PCA is implemented in the feature space. Thennonlinear feature analysis is implemented and data are reconstructed by using the kernel. The datareconciliation method based on KPCA is applied to ternary distillation column. Simulation resultsshow that this method can filter the noise in measurements of nonlinear process and reconciliateddata can represent the true information of nonlinear process.展开更多
In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonne...In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.展开更多
The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The p...The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.展开更多
为提高环境和运营变化(environmental and operational variations,EOV)影响下的桥梁损伤检测可靠性,结合逆非线性主成分分析(inverse nonlinear principal component analysis,INLPCA)和极值理论,提出一种新的桥梁损伤检测方法.该方法...为提高环境和运营变化(environmental and operational variations,EOV)影响下的桥梁损伤检测可靠性,结合逆非线性主成分分析(inverse nonlinear principal component analysis,INLPCA)和极值理论,提出一种新的桥梁损伤检测方法.该方法采用INLPCA对桥梁损伤特征进行建模,利用不完备健康监测数据的估计均方误差和添加神经网络训练惩罚项控制INLPCA的非线性程度.采用INLPCA对损伤特征的重构误差和马氏平方距离(Mahalanobis squared distance,MSD)建立损伤指标(ID),最后基于ID的广义极值(generalized extreme value,GEV)分布建立损伤检测阈值.以比利时KW51铁路桥和天津永和斜拉桥为例,验证所提方法的有效性.结果表明,所提方法能准确检测EOV影响下的桥梁损伤,且对不同桥型和不同损伤特征均有良好的适用性.展开更多
为了将高维输入空间的数据映射到低维空间,利用可视化技术探测数据的固有特性,提出了用非线性主成分分析(NLPCA:NonLinear Principal Component Analysis)和自组织映射网络相结合的方法对生物信息学中基因表达数据进行聚类可视化分析。...为了将高维输入空间的数据映射到低维空间,利用可视化技术探测数据的固有特性,提出了用非线性主成分分析(NLPCA:NonLinear Principal Component Analysis)和自组织映射网络相结合的方法对生物信息学中基因表达数据进行聚类可视化分析。实验结果表明,该方法有较高的分类正确率,用于基因表达数据的聚类分析是行之有效的。展开更多
The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the non...The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the obtained model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is assessed through application to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to better monitor real-world processes.展开更多
This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan...This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.展开更多
Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal com...Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal component analysis (NLPCA) using radial basis function (RBF) neural network is developed in this paper. The orthogonal least squares (OLS) algorithm is used to train the RBF neural network. This method improves the training speed and prevents it from being trapped in local optimization. Results of two experiments show that this NLPCA method can effectively capture nonlinear correlation of nonlinear complex data, and improve the precision of the classification and the prediction.展开更多
The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which...The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm.展开更多
Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recur...Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.展开更多
In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-...In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-tabase confirmed the validity of our approach. Another technique named improved teacher selecting student (TSS) algorithm is presented to analyze unknown samples by means of some known ones, which is of better accuracy. This technique combines the advantages of both statistical and nonlinear dynamical methods and is shown to be significant to the analysis of nonlinear ECG time series.展开更多
基金This project is supported by Special Foundation for Major State Basic Research of China (Project 973, No.G1998030415)
文摘In the industrial process situation, principal component analysis (PCA) is ageneral method in data reconciliation. However, PCA sometime is unfeasible to nonlinear featureanalysis and limited in application to nonlinear industrial process. Kernel PCA (KPCA) is extensionof PCA and can be used for nonlinear feature analysis. A nonlinear data reconciliation method basedon KPCA is proposed. The basic idea of this method is that firstly original data are mapped to highdimensional feature space by nonlinear function, and PCA is implemented in the feature space. Thennonlinear feature analysis is implemented and data are reconstructed by using the kernel. The datareconciliation method based on KPCA is applied to ternary distillation column. Simulation resultsshow that this method can filter the noise in measurements of nonlinear process and reconciliateddata can represent the true information of nonlinear process.
基金The Pre-Research Foundation of National Ministries andCommissions (No9140A16050109DZ01)the Scientific Research Program of the Education Department of Shanxi Province (No09JK701)
文摘In order to overcome the shortcomings that the reconstructed spectral reflectance may be negative when using the classic principal component analysis (PCA)to reduce the dimensions of the multi-spectral data, a nonnegative constrained principal component analysis method is proposed to construct a low-dimensional multi-spectral space and accomplish the conversion between the new constructed space and the multispectral space. First, the reason behind the negative data is analyzed and a nonnegative constraint is imposed on the classic PCA. Then a set of nonnegative linear independence weight vectors of principal components is obtained, by which a lowdimensional space is constructed. Finally, a nonlinear optimization technique is used to determine the projection vectors of the high-dimensional multi-spectral data in the constructed space. Experimental results show that the proposed method can keep the reconstructed spectral data in [ 0, 1 ]. The precision of the space created by the proposed method is equivalent to or even higher than that by the PCA.
基金Supported by the National Natural Science Founda-tion of China (60132030)
文摘The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.
文摘为了将高维输入空间的数据映射到低维空间,利用可视化技术探测数据的固有特性,提出了用非线性主成分分析(NLPCA:NonLinear Principal Component Analysis)和自组织映射网络相结合的方法对生物信息学中基因表达数据进行聚类可视化分析。实验结果表明,该方法有较高的分类正确率,用于基因表达数据的聚类分析是行之有效的。
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2001AA413320)
文摘The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the obtained model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is assessed through application to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to better monitor real-world processes.
文摘This research uses eigenvalue characteristics of nonlinear principal component analysis (NLPCA) and principal component analysis (PCA) to investigate total electron content (TEC) anomalies associated with Taiwan's Chi-Chi earthquake of 21 September 1999 (LT) (M_w=7.6). The transforms are used for ionospheric TEC from 01 August to 20 September 1999 (local time) using data from 13 GPS receivers. The data were collected at 22°N-26°N Lat. and 120°E-122°E Long.. Applying the NLPCA to the multi-channel total electron content records of GPS receivers, the earthquake-associated TEC anomalies were represented by large principal eigenvalues of NLPCA (〉0.5 in a normalized set) on 14 August and 17, 18, and 20 September, with allowance given for the Dst index, which was quiet for the study period. Comparisons were then made with other researchers who also found TEC anomalies on September 17, 18, and 19 associated with the Chi-Chi earthquake, which cannot be detected by PCA.Consideration is also given for reported ground level geomagnetic field activity that occurred between mid-August and late October, leading up to and including the Chi-Chi and Chia-Yi earthquakes, which are associated with the same series of faults. It is possible that Aug. 14 is representative of an earthquake-associated TEC anomaly. This is an interesting result given how much earlier than the earthquake it occurred.
基金Supported by Nationai Natural Science Foundation of China (61074085), Beijing Natural Science Foundation (4122029, 4142035), and the Fundamental Research Funds for the Central Universities (F_RF-SD-12-008B, FRF-AS- 11-004B)
文摘Traditional PCA is a linear method, but most engineering problems are nonlinear. Using the linear PCA in nonlinear problems may bring distorted and misleading results. Therefore, an approach of nonlinear principal component analysis (NLPCA) using radial basis function (RBF) neural network is developed in this paper. The orthogonal least squares (OLS) algorithm is used to train the RBF neural network. This method improves the training speed and prevents it from being trapped in local optimization. Results of two experiments show that this NLPCA method can effectively capture nonlinear correlation of nonlinear complex data, and improve the precision of the classification and the prediction.
基金Supported by the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList) the National Natural Science Foundation of China (No. 60675002)
文摘The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm.
基金Project supported by the National Basic Research Program (973) of China (No. 2009CB320600) the National Natural Science Foun-dation of China (No. 60974057)
文摘Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.
文摘In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-tabase confirmed the validity of our approach. Another technique named improved teacher selecting student (TSS) algorithm is presented to analyze unknown samples by means of some known ones, which is of better accuracy. This technique combines the advantages of both statistical and nonlinear dynamical methods and is shown to be significant to the analysis of nonlinear ECG time series.