期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
Impact of Surface Sensible Heating over the Tibetan Plateau on the Western Pacific Subtropical High: A Land–Air–Sea Interaction Perspective 被引量:18
1
作者 Anmin DUAN Ruizao SUN Jinhai HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期157-168,共12页
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th... The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework. 展开更多
关键词 Tibetan Plateau surface sensible heating western pacific subtropical high enso tropical air-sea interaction
下载PDF
Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer 被引量:3
2
作者 Xinyu LI Riyu LU Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期931-942,共12页
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan... This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity. 展开更多
关键词 western north pacific subtropical high East Asian westerly jet CIRCULATION RAINFALL sea surface temperature
下载PDF
Decadal Change in the Influence of the Western North Pacific Subtropical High on Summer Rainfall over the Yangtze River Basin in the Late 1970s 被引量:1
3
作者 Xinyu LI Riyu LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1823-1834,共12页
It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This... It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This study identifies that this correspondence experiences a decadal change in the late 1970s.That is,the WNPSH significantly affects YRB precipitation(YRBP)after the late 1970s(P2)but not before the late 1970s(P1).It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2.On the other hand,after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1,the WNPSH can still significantly affect YRB rainfall,suggesting that the WNPSH variability is not the only factor that affects the WNPSH-YRBP relationship.Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH-YRBP relationship.In P2,the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter,and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced.As a result,the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB. 展开更多
关键词 Yangtze River basin western north pacific subtropical high RAINFALL interannual relationship decadal change
下载PDF
Simulation of the western North Pacific subtropical high in El Ni?o decaying summers by CMIP5 AGCMs 被引量:1
4
作者 DONG Xiao FAN Fang-Xing +2 位作者 LIN Ren-Ping JIN Jiang-Bo LIAN Ru-Xu 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第2期146-155,共10页
The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that m... The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that most models can reproduce the spatial pattern of both climatological and anomalous circulation associated with the WNPSH in El Nino decaying summers. Most CMIP5 AGCMs can capture the westward shift of the WNPSH in El Nino decaying summers compared with the climatological location. With respect to the sub-seasonal variation of the WNPSH, the performances of these AGCMs in reproducing the northward jump of the WNPSH are better than simulating the eastward retreat of the WNPSH from July to August. Twenty-one out of twenty-two (20 out of 22) models can reasonably reproduce the northward jump of the WNPSH in El Nino decaying summers (climatology), while only 7 out of 22 (8 out of 22) AGCMs can reasonably reproduce the eastward retreat of the WNPSH in El Nino decaying summers (climatology). In addition, there is a close connection between the climatological WNPSH location bias and that in El Nino decaying summers. 展开更多
关键词 Western north pacific subtropical high El Nino decaying summer CMIPS AGCM sub-seasonal variation
下载PDF
Interdecadal Change in the Interannual Variation of the Western Edge of the Western North Pacific Subtropical High During Early Summer and the Influence of Tropical Sea Surface Temperature 被引量:1
5
作者 ZHAN Hong-yu CHEN Rui-dan LAN Ming 《Journal of Tropical Meteorology》 SCIE 2022年第1期57-70,共14页
This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zona... This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP(WNPHA)in abnormal years possess smaller ranges after 1990.The different influences of the tropical SSTAs are important for this interdecadal change,which exhibit slow El Nino decaying pattern before 1990 while rapid transformation from El Nino to La Nina after 1990.The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences.Before 1990,the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation,respectively.Meanwhile,the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response,which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific.After 1990,the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation,respectively.Overall,the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990.Consequently,the WNPHA features narrower zonal range and less eastward extension after 1990,corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH.On the other hand,the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990,contributing to the change of the El Nino SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type. 展开更多
关键词 western north pacific subtropical high interdecadal change interannual variation tropical sea surface temperature enso
下载PDF
Projected changes in the western North Pacific subtropical high under six global warming targets
6
作者 FU Yuanhai GUO Dong 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第1期26-33,共8页
The summer western North Pacific subtropical high(WNPSH) has large influences on the East Asian summer climate. Many studies have focused on the projected changes in the WNPSH, but little is known about the changes un... The summer western North Pacific subtropical high(WNPSH) has large influences on the East Asian summer climate. Many studies have focused on the projected changes in the WNPSH, but little is known about the changes under different global warming targets, such as 1.5℃ and 2.0℃. This study investigates the changes in the WNPSH under six global warming targets(1.5℃, 2.0℃, 2.5℃,3.0℃, 3.5℃, and 4.0℃) in both the mid-and lower troposphere, using the outputs of CMIP5 model in historical simulations and under Representative Concentration Pathway 8.5. The projected changes in the WNPSH, which is measured by multiple variables, show that it changes little under the 1.5℃ target in the mid-troposphere, but weakens and retreats approximately 2.5° in longitude under the 2.0℃ target. It tends to linearly weaken with warming greater than 2.5℃ and shifts eastward by approximately 6.0° in longitude by the 4.0℃ target. Meanwhile, the WNPSH intensifies and extends westward under the 1.5℃ target in the lower troposphere, but changes little with warming rising from 1.5℃ to 2.0℃. It is projected to extend westward by approximately2.0° in longitude by the 4.0℃ target. 展开更多
关键词 Global warming target western north pacific subtropical high climate change
下载PDF
RELATIONSHIP BETWEEN WEST PACIFIC SUBTROPICAL HIGH AND ENSO AND ITS INFLUENCE ON RAINFALL DISTRIBUTION OF RAINY SEASON IN FUJIAN
7
作者 蔡学湛 吴滨 温珍治 《Journal of Tropical Meteorology》 SCIE 2003年第1期57-63,共7页
Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the... Relationship between the variations of West Pacific subtropical high indices in the summer half of the year and preceding SST in North Pacific was examined based on a data set of 1951 2000. The correlation between the subtropical high indices and preceding SST in the equatorial East Pacific was the strongest among the others, and has great persistency from last autumn to spring. It is indicated that ENSO events appeared about six months earlier than the change of the subtropical high activities, and the subtropical high intensities enhanced (weakened) and western ridge point was westward (eastward) in the year of El Nino (La Nina) events. It was also observed that there were similar interdecadal oscillation and abrupt variations between Nino3 SST, subtropical high intensities and rainfall of rainy season in Fujian. Therefore, experiments were made on rainfall distribution of rainy season in Fujian. The results showed that the distribution was directly affected by the subtropical high activities, pronouncedly caused by ENSO effect. 展开更多
关键词 enso West pacific subtropical high rainy season rainfall distribution
下载PDF
Enhanced correlation between ENSO and western North Pacific monsoon during boreal summer around the 1990s 被引量:3
8
作者 WU Minmin WANG Lei 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第5期376-384,共9页
The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant... The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant correlation afterward.This observed interdecadal change around the 1990 s may be associated with more frequent occurrences of central Pacific(CP)El Nino and the interdecadal changes in ENSO-associated SST anomalies.During the post-1990 s period(the pre-1990 s period),highly noticeable tropical Atlantic(Indian)Ocean SST anomalies tend to co-occur with the summertime Nino3.4 SST anomalies.The concurrent tropical Atlantic(Indian)Ocean SST anomalies could constructively reinforce(destructively mitigate)the WNP monsoon circulation anomalies induced by the summertime Nino3.4 SST,thus boosting(muting)the correlation between summertime Nino3.4 SST and WNP monsoon.In addition,the faster decaying pace of preceding-winter El Nino after the 1990 s,which may have been mainly induced by the influences from the spring tropical North Atlantic SST anomalies,could also have contributed to the enhanced correlation between the summertime Nino3.4 index and WNP monsoon.These results suggest that the enhanced influences from the tropical Atlantic SST may have triggered the intensified correlation between summertime ENSO and WNP monsoon since the early 1990 s. 展开更多
关键词 Western north pacific summer monsoon enso tropical Atlantic SST anomaly interdecadal variability inter-basin interaction
下载PDF
Predictability of the Western North Pacific Subtropical High Associated with Different ENSO Phases in GloSea5 被引量:3
9
作者 Daquan ZHANG Gill M.MARTIN +2 位作者 Jose MRODRIGUEZ Zongjian KE Lijuan CHEN 《Journal of Meteorological Research》 SCIE CSCD 2020年第5期926-940,共15页
The western North Pacific subtropical high(WNPSH) dominates the summer climate over East Asia. The intensity,position, and shape of WNPSH influence the spatiotemporal distributions of precipitation, temperature, and t... The western North Pacific subtropical high(WNPSH) dominates the summer climate over East Asia. The intensity,position, and shape of WNPSH influence the spatiotemporal distributions of precipitation, temperature, and tropical cyclone activities in this region. This paper intends to investigate the performance of the UK Met Office Global Seasonal forecast system version 5(GloSea5) in simulation/prediction of the WNPSH based on a hindcast dataset. Analyses of the hindcast data show a systematic bias in the mean circulation over West Pacific, with negative geopotential height anomalies over the western North Pacific(WNP) and cyclonic anomalies in the 850-hPa winds and water vapor transport, indicating a weakening and eastward shift of the WNPSH. Despite the model’s bias in the climatology, it well captured the interannual variability of the monthly and seasonal-mean intensity of the WNPSH and the position of its ridge line in boreal summer from 1993 to 2015. The seasonal hindcasts indicate that there is significant prediction skill at up to three-month lead time for both the intensity and position of the WNPSH ridge line. The relationship between the WNPSH and different phases of the El Nino–Southern Oscillation(ENSO) in both the observational data and GloSea5 hindcasts was then investigated. The model captured the summer WNPSH anomalies well during most of the ENSO phases, except in the La Nina decaying and neutral summers. The intensity of the anticyclone in the WNP is weak in the decaying phase of El Nino in the GloSea5 hindcasts compared with the reanalysis data. GloSea5 is capable of representing the lagged teleconnection between El Nino events in the previous winter and the intensity of the WNPSH in the following summer. Regression analysis reveals weakened negative sea surface temperature anomalies(SSTAs) over the WNP in GloSea5, which reduced the gradient between the tropical western Pacific and the tropical Indian Ocean, resulting in a weaker easterly anomaly and stronger westerly anomaly, contributing to the weak anomalous anticyclone over the WNP and the weakened WNPSH relative to the reanalysis data. 展开更多
关键词 western north pacific subtropical high(WNPSH) Global Seasonal forecast system version 5(GloSea5) El Nino–Southern Oscillation(enso) PRECIPITATION PREDICTABILITY
原文传递
Prediction of the Western North Pacific Subtropical High in Summer without Strong ENSO Forcing 被引量:2
10
作者 Chaofan LI Riyu LU Nick DUNSTONE 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期101-112,共12页
The western North Pacific subtropical high(WNPSH) is one of the deterministic predictors of the East Asian summer climate, and a better prediction of the WNPSH favors more reasonable forecast of the East Asian summer ... The western North Pacific subtropical high(WNPSH) is one of the deterministic predictors of the East Asian summer climate, and a better prediction of the WNPSH favors more reasonable forecast of the East Asian summer climate. This study focuses on seasonal prediction of the WNPSH during neutral summers without strong El Ni?o–Southern Oscillation(ENSO) forcing, and explores the associated predictable sources, using the one-month lead time retrospective forecasts from the Ensembles-Based Predictions of Climate Changes and Their Impacts(ENSEMBLES) project during 1960–2005. The results indicate that the ENSEMBLES atmosphere–ocean–land coupled models exhibit considerable prediction skill for the WNPSH during neutral summers, with successful reproduction of the WNPSH in the majority of neutral summers. The anomalous WNPSH in neutral summers, which corresponds to cyclonic/anticyclonic anomalies in the lower troposphere, is highly correlated with an east–west dipole local sea surface temperature(SST) distribution over the tropical WNP, suggesting an intimate local air–sea coupling. Further diagnosis of the local SST–rainfall relationship and surface heat flux indicates that the anomalous local SST plays an active role in modulating the variation of the WNPSH during neutral summers, rather than passively responding to the atmospheric change. The local SST anomalies and relevant air–sea coupling over the tropical WNP are reasonably well reproduced in the model predictions, and could act as primary predictable sources of the WNPSH in neutral summers. This could aid in forecasting of the East Asian rainband and associated disaster mitigation planning. 展开更多
关键词 western north pacific subtropical high seasonal forecast neutral year air–sea interaction
原文传递
Two Northward Jumps of the Summertime Western Pacific Subtropical High and Their Associations with the Tropical SST Anomalies 被引量:13
11
作者 SU Tong-Hua XUE Feng 《Atmospheric and Oceanic Science Letters》 2011年第2期98-102,共5页
Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical S... Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean. 展开更多
关键词 western pacific subtropical high northward iump sea surface temperature anomaly enso
下载PDF
The Key Oceanic Regions Responsible for the Interannual Variability of the Western North Pacific Subtropical High and Associated Mechanisms 被引量:10
12
作者 何超 周天军 吴波 《Journal of Meteorological Research》 SCIE CSCD 2015年第4期562-575,共14页
The western North Pacific subtropical high (WNPSH) is an important circulation system that impacts the East Asian summer climate. The interannual variability of the WNPSH is modulated by tropical air-sea interaction... The western North Pacific subtropical high (WNPSH) is an important circulation system that impacts the East Asian summer climate. The interannual variability of the WNPSH is modulated by tropical air-sea interaction. In order to make it clear which oceanic regions are crucial to the interannual variability of the WNPSH, the research progresses in this regard in the past decade are reviewed. Based on the review, it is recognized that five oceanic regions are responsible for the interannual variability of the WNPSH in summer, including the equatorial central-eastern Pacific Ocean, tropical Indian Ocean, subtropical western North Pacific, the vicinity of the maritime continent, and the tropical Atlantic Ocean. The mechanisms how the sea surface temperature anomalies (SSTAs) in these regions affect the WNPSH are elaborated. The formation mechanisms for the SSTAs in these five regions are discussed. Strengths and weaknesses of the climate models in simulating and predicting the WNPSH are also documented. Finally, key scientific problems deserving further studies are proposed. 展开更多
关键词 western north pacific subtropical high interannual variability air-sea interaction
原文传递
Analysis of More Tropical Cyclone Genesis over the Western North Pacific in 2016
13
作者 Jian Li 《Journal of Geoscience and Environment Protection》 2019年第12期181-197,共17页
Tropical cyclone (TC) is the most catastrophic weather system characterized by strong winds and heavy rains, and is therefore the main research object of tropical meteorology. Based on National Oceanic and Atmospheric... Tropical cyclone (TC) is the most catastrophic weather system characterized by strong winds and heavy rains, and is therefore the main research object of tropical meteorology. Based on National Oceanic and Atmospheric Administration (NOAA) Sea Surface Temperature (SST), Outgoing Long wave Radiation (OLR) and National Centers for Environmental Prediction (NCEP) monthly reanalysis data and Regional Specialized Meteorological Center (RSMC) Tokyo best track data and China Meteorological Administration (CMA) tropical cyclone during 1979-2016, we analyze the feathers of tropical cyclones and causes of more tropical cyclones (TCs) over the western north Pacific(including the South China Sea) (WNP) in 2016. The results show that compared the number of tropical cyclone genesis was higher, the originated time was later and concentrated in autumn, the region of more cyclones formed in north and east, and the number of landing TCs was higher. Negative sea surface temperature anomaly in the equatorial eastern Pacific and a westward deviation of the ascending branch of Walker circulation can strengthen the intensity of convection activity based on an existing lead-lag correlation during the period of TC activity (from August to September).The West Pacific subtropical high (WPSH) was exceptionally stronger than in other years and its west ridge point appreciably stretched westward and northward from August to September in 2016, which is favorable to TC genesis. At the same time, ω positive anomaly located in northward which was favorable for more TC genesis in WNP. In addition, the anomalous distribution of environmental factors such as low vorticity, OLR and vertical wind shear may also be the cause of the formation of tropical cyclones in the West North Pacific in 2016. 展开更多
关键词 WESTERN north pacific Sea Surface Temperature WESTERN pacific subtropical high Environmental Factors
下载PDF
Atmospheric eddy anomalies associated with the wintertime North Pacific subtropical front strength and their influences on the seasonal-mean atmosphere 被引量:4
14
作者 WANG LiYing HU HaiBo +1 位作者 YANG XunQun REN XueJuan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第10期2022-2036,共15页
This study investigates transient eddy activity anomalies in the mid-latitude upper troposphere associated with intensity variability of the wintertime North Pacific subtropical front. Our results show that the meridi... This study investigates transient eddy activity anomalies in the mid-latitude upper troposphere associated with intensity variability of the wintertime North Pacific subtropical front. Our results show that the meridional gradient of air temperature and baroclinic instability in the mid-latitude atmosphere become stronger as the subtropical front intensifies, and the mid-latitude westerly jet accelerates with barotropic structure. We further divide the mid-latitude atmospheric eddy activities into high-(2–7 days) and low-frequency(10–90 days) eddy activities according to their life periods. We find that, when the oceanic subtropical front intensifies, the high-frequency atmospheric eddy activity in the mid-latitudes strengthens while the low-frequency eddy activity weakens. The stronger high-frequency eddy activity tends to moderate the air temperature gradient and baroclinicity in the mid-latitudes. High-frequency eddy anomalies accelerate the westerly jet on the northern side and downstream of the westerly jet, and enhance the jet with equivalent barotropic structure. In contrast, the weaker low-frequency eddy activity has a negative contribution to zonal wind speed tendency and attenuates the zonal homogenization of the jet. The anomalous thermodynamic forcing of the low-frequency eddy activity helps maintain the meridional gradient of air temperature in the mid-troposphere. 展开更多
关键词 north pacific subtropical front Frequency Eddy activity Mid-Latitude Ocean-Atmosphere interaction
原文传递
DISTRIBUTION OF LOW FREQUENCY WAVES IN NORTH PACIFIC AND INTRASEASONAL ABNORMALITY OF THE WESTERN PACIFIC SUBTROPICAL HIGH 被引量:1
15
作者 李兴亮 喻世华 《Journal of Tropical Meteorology》 SCIE 1996年第2期171-180,共10页
By using ECMWF (2. 5°×2. 5°) grid data, analyzing correlation for the summer (June-August) of 1980 (the West Pacific Subtropical High (WPSH) anomalously more to the south), 1988 (the WPSH anomalously mo... By using ECMWF (2. 5°×2. 5°) grid data, analyzing correlation for the summer (June-August) of 1980 (the West Pacific Subtropical High (WPSH) anomalously more to the south), 1988 (the WPSH anomalously more to the north), 1981 (normal) in the west Pacific area, distribution characteristics of the low frequency waves are discussed. The relationship between distribution of the low frequency waves and intraseasonal abnormality of the west subtropical high is also analyzed. There is some discussions:(1)If the WPSH acts anomalously in summer, there is a distinct zonal wave series in the subtropical zone of the north Pacific.(2) One of the important characteristics of the WPSH abnormality is that there are low frequency geopotential high centres from east Pacific and northeast Asia, being combined in the west Pacific area.For different circulation, the combination areas are different, which define the WSPH anomalously more to the north or south. 展开更多
关键词 LOW FREQUENCY wave subtropical high ABNORMALITY north pacific
下载PDF
Evolution mechanism of the western Pacific subtropical high 被引量:1
16
作者 曹杰 黄荣辉 +1 位作者 谢应齐 陶云 《Science China Earth Sciences》 SCIE EI CAS 2003年第3期257-268,共12页
To surmount the deficiency in studying the multiple equilibrium states in the atmosphere motion with highly truncated spectral method, the trigonometric functions for describing the proto-typical 500 hPa height fields... To surmount the deficiency in studying the multiple equilibrium states in the atmosphere motion with highly truncated spectral method, the trigonometric functions for describing the proto-typical 500 hPa height fields and the outgoing long wave radiation (OLR) fields are retrieved re-spectively for the northward bias and the southward bias years of the western Pacific subtropical high with corresponding observational data and the optimum subset retrieval method for four fac-tors. Then the evolution mechanism of the western Pacific subtropical high is studied by means of multiple equilibrium state theory. The results show that the cause of inducing the abnormal location of the western Pacific subtropical high is differences in the early external thermal forcing, which evoke different waveforms in atmosphere. If the early meridional and zonal external thermal forcing differences are stronger, there are wave-mean flow and wave-wave interactions between the response waveforms in atmosphere. In such a case, the western Pacific subtropical high shifts northward obviously. On the contrary, when the early meridional and zonal external thermal forcing differences are weaker, there is no wave-mean flow interaction between the response waveforms in atmosphere, and accordingly the position of the western Pacific subtropical high oscillates with the external thermal forcing oscillation, and is on the south of normal. 展开更多
关键词 WESTERN pacific subtropical high wave-mean flow interaction highly TRUNCATED SPECTRAL method multiple EQUILIBRIUM state.
原文传递
Theories on Formation of an Anomalous Anticyclone in Western North Pacific during El Nino:A Review 被引量:37
17
作者 Tim LI Bin WANG +3 位作者 Bo WU Tianjun ZHOU Chih-Pei CHANG Renhe ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2017年第6期987-1006,共20页
The western Noah Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Nifio impact on East Asian climate. In this review paper, various theories on the formation and m... The western Noah Pacific anomalous anticyclone (WNPAC) is an important atmospheric circulation system that conveys El Nifio impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere-ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advecfion/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere-ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Nifio mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Nifio decaying summer. The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An inter- basin atmosphere-ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Nifio decaying/La Nina developing or La Nifia persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean. 展开更多
关键词 western north pacific anomalous anticyclone El Ni?o atmosphere–ocean interaction enso sea surface temperature Indian Ocean capacitor
原文传递
Impacts of Two Types of Northward Jumps of the East Asian Upper-tropospheric Jet Stream in Midsummer on Rainfall in Eastern China 被引量:2
18
作者 林中达 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1224-1234,共11页
The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced... The East Asian upper-tropospheric jet stream (EAJS) typically jumps north of 45~N in midsummer. These annual northward jumps are mostly classified into two dominant types: the first type corresponds to the enhanced westerly to the north of the EAJS's axis (type A), while the second type is related to the weakened westerly within the EAJS's axis (type B). In this study, the impacts of these two types of northward jumps on rainfall in eastern China are investigated. Our results show that rainfall significantly increases in northern Northeast China and decreases in the Yellow River-Huaihe River valleys, as well as in North China, during the type A jump. As a result of the type B jump, rainfall is enhanced in North China and suppressed in the Yangtze River valley. The changes in rainfall in eastern China during these two types of northward jumps are mainly caused by the northward shifts of the ascending air flow that is directly related to the EAJS. Concurrent with the type A (B) jump, the EAJS-related ascending branch moves from the Yangtze-Huai River valley to northern Northeast (North) China when the EAJS's axis jumps from 40~N to 55~N (50~N). Meanwhile, the type A jump also strengthens the Northeast Asian low in the lower troposphere, leading to more moisture transport to northern Northeast China. The type B jump, however, induces a northwestward extension of the lower-tropospheric western North Pacific subtropical high and more moisture transport to North China. 展开更多
关键词 northward jump East Asian upper-tropospheric jet stream eastern China rainfall northeast Asian low western north pacific subtropical high
下载PDF
北太平洋副热带高压年际变异与ENSO循环之间的选择性相互作用 被引量:12
19
作者 李熠 杨修群 谢倩 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第7期1543-1553,共11页
利用NCEP/NCAR大气再分析资料以及Hadley中心海表温度资料,针对北太平洋副热带高压(简称副高)的完整系统,通过分析超前于ENSO事件的海平面副高年际异常特征及其对ENSO事件的触发作用以及ENSO事件对500 hPa副高和海平面副高的滞后影响,... 利用NCEP/NCAR大气再分析资料以及Hadley中心海表温度资料,针对北太平洋副热带高压(简称副高)的完整系统,通过分析超前于ENSO事件的海平面副高年际异常特征及其对ENSO事件的触发作用以及ENSO事件对500 hPa副高和海平面副高的滞后影响,结果表明了北太平洋副热带高压年际变异和ENSO循环之间存在选择性相互作用.即在大多数情况下,一方面,前期海平面副高减弱会导致热带西太平洋表面西风异常,通过海洋平流过程触发El Nino事件在夏季发生发展,在秋冬季成熟;而另一方面,El Nino事件在秋冬季发展成熟后,增强了赤道中太平洋的对流性热源,通过对异常热源的动力响应,同期和次年夏季500 hPa副高增强,又通过增强的Hadley环流作用,副热带地区下沉运动增强,从而使得次年夏季海平面副高增强,增强的海平面副高又有利于触发下一个La Nina事件.副高年际变异和ENSO循环之间相互作用的选择性主要取决于副高异常是否接近于赤道以及ENSO事件本身的持续性.这种相互作用有利于在热带太平洋海气系统产生准两年振荡. 展开更多
关键词 北太平洋 副热带高压 enso 相互作用
下载PDF
西太平洋副高与ENSO的关系及其对福建雨季降水分布的影响 被引量:37
20
作者 蔡学湛 温珍治 吴滨 《热带气象学报》 CSCD 北大核心 2003年第1期36-42,共7页
利用1951~2000年北太平洋海温和副高特征量资料,探讨夏半年副高与前期海温的关系,发现影响副高活动的海温关键区赤道东太平洋前期信息最明显,从前期秋季持续至春季都保持与夏半年各月副高强度、西伸脊点位置的高相关;ENSO事件的形成超... 利用1951~2000年北太平洋海温和副高特征量资料,探讨夏半年副高与前期海温的关系,发现影响副高活动的海温关键区赤道东太平洋前期信息最明显,从前期秋季持续至春季都保持与夏半年各月副高强度、西伸脊点位置的高相关;ENSO事件的形成超前于副高强度的转折约半年时间;El Nino年副高持续偏强偏西,La Nina年则相反,脊线位置也有所反映,但不如强度与西伸显著。在此基础上进一步分析表明,福建雨季降水、副高强度与Nino 3区海温存在着大约相一致的年代际振荡与突变时间;雨季降水分布的异常直接受到副高活动的影响,而副高活动又明显受ENSO循环的制约,因而关注赤道东太平洋海温异常及ENSO信息对福建雨季降水分布趋势的预测具有重要意义。 展开更多
关键词 西太平洋副高 enso 福建 雨季 降水分布 厄尔尼诺
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部