Coesite provides direct evidence for ultrahigh pressure metamorphism. Although coesite has been found as inclusions in zircon in paragneiss of the north Qaidam Mountains, it has never been identified in eclogite. In t...Coesite provides direct evidence for ultrahigh pressure metamorphism. Although coesite has been found as inclusions in zircon in paragneiss of the north Qaidam Mountains, it has never been identified in eclogite. In this contribution, based on petrographic observations and in situ Raman microprobe spectroscopy, coesite was identified as inclusions in garnet of eclogite from the Aercituoshan, Dulan UHP metamorphic unit, north Qaidam Mountains. Coesite is partly replaced by quartz, showing a pali-sade texture. This is the first report on coesite in eclogite from the north Qaidam Mountains, and is also supported by garnet-omphacite-phengite geothermobarometry (2.7―3.25 GPa, 670―730℃). Coesite and its pseudomorphs have not been found in eclogites and associated rocks of other units of the north Qaidam Mountains. Further studies are required to confirm if all metamorphic units in the north Qaidam Mountains underwent the ultrahigh-pressure metamorphism.展开更多
The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world a...The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world and was considered as the key element in the escape tectonics model for Euraisa\|India continent\|continent collision.Recently,the eclogites within quratzifeldspathic gneisses or pelitic gneisses characterized by amphibolite\|facies paragenesis were discovered in the Altun and the North Qaidam Mountains(Fig.1). They occur as lens or boundins within the Altun Group and Dakendaban Group respectively which previously were considered as metamorphic basement of Tarim block and Qaidam block. Our studies indicate that the eclogites outcrop in both the Altun and North Qaidam Mountains show similar occurrences, associated country rocks, rock and mineral assemblages, p\|T\% estimates, geochemistryand protolith feature and ages of peak metamorphism (see table) . The garnet\|omphacite\|phengite geothermobarometer gave equilibrium condition of \%p\%=2 8~3 0GPa and t =820~850℃ for the Altun eclogite and p =2 8GPa and \%t\%=730℃ for North Qaidam eclogite respectively(Fig..2). These p\|T conditions are in the coesite stability field. Moreover, Po lycrystalline quartz pseudomorphs after coesite have been identified in the Dulan area, North Qaidam Mountains (Song et al, in review). Therefore, these features suggest that both eclogites of Altun and North Qaidam Mountains probably are a same HP\|UHP metamorphic belt formed from the same of Early Paleozoic age deep subduction and collision, and subsequently displaced by the Altyn Tagh fault.The case is similar to the Dabie\|Sulu HP\|UHP metamorphic zone which was truncated by the Tanlu sinistral strike\|slip fault and splitted it into two distincts, the Dabie region and Sulu region. These correlations support an about 350~400km displacement of the Altyn Tagh sinistral strike\|slip fault (Fig.1).展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.41772138, 40472102 and 40272095)Program of Excellent Young Scientists of the Ministry of Land and Resources of ChinaGeological Survey Project of China Geological Survey (Grant No. 1212010611811)
文摘Coesite provides direct evidence for ultrahigh pressure metamorphism. Although coesite has been found as inclusions in zircon in paragneiss of the north Qaidam Mountains, it has never been identified in eclogite. In this contribution, based on petrographic observations and in situ Raman microprobe spectroscopy, coesite was identified as inclusions in garnet of eclogite from the Aercituoshan, Dulan UHP metamorphic unit, north Qaidam Mountains. Coesite is partly replaced by quartz, showing a pali-sade texture. This is the first report on coesite in eclogite from the north Qaidam Mountains, and is also supported by garnet-omphacite-phengite geothermobarometry (2.7―3.25 GPa, 670―730℃). Coesite and its pseudomorphs have not been found in eclogites and associated rocks of other units of the north Qaidam Mountains. Further studies are required to confirm if all metamorphic units in the north Qaidam Mountains underwent the ultrahigh-pressure metamorphism.
文摘The Altun and North Qaidam Mountains at the northern margin of Qinghai\|Tibet plateau are separated by the Altyn Tagh sinistral strike\|slip fault, which is one of the largest strike\|slip fault systems in the world and was considered as the key element in the escape tectonics model for Euraisa\|India continent\|continent collision.Recently,the eclogites within quratzifeldspathic gneisses or pelitic gneisses characterized by amphibolite\|facies paragenesis were discovered in the Altun and the North Qaidam Mountains(Fig.1). They occur as lens or boundins within the Altun Group and Dakendaban Group respectively which previously were considered as metamorphic basement of Tarim block and Qaidam block. Our studies indicate that the eclogites outcrop in both the Altun and North Qaidam Mountains show similar occurrences, associated country rocks, rock and mineral assemblages, p\|T\% estimates, geochemistryand protolith feature and ages of peak metamorphism (see table) . The garnet\|omphacite\|phengite geothermobarometer gave equilibrium condition of \%p\%=2 8~3 0GPa and t =820~850℃ for the Altun eclogite and p =2 8GPa and \%t\%=730℃ for North Qaidam eclogite respectively(Fig..2). These p\|T conditions are in the coesite stability field. Moreover, Po lycrystalline quartz pseudomorphs after coesite have been identified in the Dulan area, North Qaidam Mountains (Song et al, in review). Therefore, these features suggest that both eclogites of Altun and North Qaidam Mountains probably are a same HP\|UHP metamorphic belt formed from the same of Early Paleozoic age deep subduction and collision, and subsequently displaced by the Altyn Tagh fault.The case is similar to the Dabie\|Sulu HP\|UHP metamorphic zone which was truncated by the Tanlu sinistral strike\|slip fault and splitted it into two distincts, the Dabie region and Sulu region. These correlations support an about 350~400km displacement of the Altyn Tagh sinistral strike\|slip fault (Fig.1).