城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该...城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。展开更多
交通智能(IC)卡可以记录居民的移动出行,反映居民的源-目的地(OD)信息;但智能卡记录的OD流数据规模大,直接可视化空间分布容易导致视觉杂乱,并且多元数据类型多,更难以和流数据结合对比分析。首先,针对直接可视化大规模OD数据的空间分...交通智能(IC)卡可以记录居民的移动出行,反映居民的源-目的地(OD)信息;但智能卡记录的OD流数据规模大,直接可视化空间分布容易导致视觉杂乱,并且多元数据类型多,更难以和流数据结合对比分析。首先,针对直接可视化大规模OD数据的空间分布容易视觉遮挡的问题,提出基于正交非负矩阵分解(ONMF)的流聚类方法。所提方法对源-目的地数据聚类后再可视化,可以减少不必要的遮挡。然后,针对多元时空数据类型多难以结合对比分析的问题,设计了公交站点多元时序数据视图。该可视化方法将公交站点的流量大小和空气质量、空气温度、相对湿度、降雨量这四类多元数据在同一时间序列上编码,提高了视图的空间利用率并且可以对比分析。再次,为了辅助用户探索分析,开发了基于OD流和多元数据的交互式可视分析系统,并设计了多种交互操作提升用户探索效率。最后,基于新加坡交通智能卡数据集,从聚类效果和运行时间对该聚类方法评估。结果显示,在用轮廓系数评估聚类效果上,所提方法比原始方法提升了0.028,比用K均值聚类方法提升了0.253;在运行时间上比聚类效果较好的ONMFS(ONMF through Subspace exploration)方法少了254 s。通过案例分析和系统功能对比验证了系统的有效性。展开更多
Microsoft Excel文档是ODS(Operational Data Store,操作型数据仓)的重要数据来源,同时ODS中的数据也需要按照Excel文件格式输出,而Excel的专有文件格式使其与ODS进行数据交换时存在一定困难。在分析Excel文件结构和Jakarta POI-HSSF(Po...Microsoft Excel文档是ODS(Operational Data Store,操作型数据仓)的重要数据来源,同时ODS中的数据也需要按照Excel文件格式输出,而Excel的专有文件格式使其与ODS进行数据交换时存在一定困难。在分析Excel文件结构和Jakarta POI-HSSF(Poor Obfuscation Implementation&Horrible Spread Sheet Format)功能基础上,详细描述了基于Java的Excel文档与ODS之间进行数据交换的方法,并介绍了实际实现过程中应注意的事项。展开更多
文摘城市轨道交通起讫点(origin-destination,OD)客流短时预测在智能交通系统中意义重大,它为交通管控策略实施以及出行者出行选择提供了重要的决策依据。卷积神经网络被广泛用于交通数据空间相关性提取,但其平移不变性与局部敏感性导致该方法更重视局部特征而忽视全局特征。本研究构建了基于注意力机制的异构数据特征提取机模型(heterogeneous data feature extraction machine,HDFEM)以实现OD矩阵空间相关性的全局感知。该模型从时空特征和用地属性特征出发,构造异构数据OD时空张量与地理信息张量,依托模型张量编码层对异构数据张量进行分割与编码,通过注意力机制连接各张量块特征,提取OD矩阵中各个部分间的空间相关性。该方法不仅实现了异构数据与OD客流数据的融合,还兼顾了卷积神经网络模型未能处理的OD矩阵远距离特征,进而帮助模型更全面地学习OD客流的空间特征。对于OD时序特性,该模型使用了长短时记忆网络来处理。在杭州地铁自动售检票系统(auto fare collection,AFC)数据集上的实验结果表明:HDFEM模型相对于基于卷积神经网络的预测模型,其均方误差、平均绝对误差与标准均方根误差分别下降了4.1%,2.5%,2%,验证了全局OD特征感知对于城市轨道交通OD客流预测的重要性。
文摘交通智能(IC)卡可以记录居民的移动出行,反映居民的源-目的地(OD)信息;但智能卡记录的OD流数据规模大,直接可视化空间分布容易导致视觉杂乱,并且多元数据类型多,更难以和流数据结合对比分析。首先,针对直接可视化大规模OD数据的空间分布容易视觉遮挡的问题,提出基于正交非负矩阵分解(ONMF)的流聚类方法。所提方法对源-目的地数据聚类后再可视化,可以减少不必要的遮挡。然后,针对多元时空数据类型多难以结合对比分析的问题,设计了公交站点多元时序数据视图。该可视化方法将公交站点的流量大小和空气质量、空气温度、相对湿度、降雨量这四类多元数据在同一时间序列上编码,提高了视图的空间利用率并且可以对比分析。再次,为了辅助用户探索分析,开发了基于OD流和多元数据的交互式可视分析系统,并设计了多种交互操作提升用户探索效率。最后,基于新加坡交通智能卡数据集,从聚类效果和运行时间对该聚类方法评估。结果显示,在用轮廓系数评估聚类效果上,所提方法比原始方法提升了0.028,比用K均值聚类方法提升了0.253;在运行时间上比聚类效果较好的ONMFS(ONMF through Subspace exploration)方法少了254 s。通过案例分析和系统功能对比验证了系统的有效性。