In the paper, a novel method, which exploits both the Orthogonal Frequency Division Multiplexing (OFDM)-Code Division Multiple Access (CDMA) technique and the time reversal mirror technique, is investigated to realize...In the paper, a novel method, which exploits both the Orthogonal Frequency Division Multiplexing (OFDM)-Code Division Multiple Access (CDMA) technique and the time reversal mirror technique, is investigated to realize multi-user underwater acoustic communication. By taking advantages of these two techniques, the proposed method has the capability of effectively suppressing multi-path interference, reducing the error rate, enhancing the processing gain and improving user capacity. Simulations verify the correctness and effectiveness of the proposed method.展开更多
OFDM-CDMA is an attractive technique for broadband wireless communication. However, the high peakto-average power ratio (PAPR) of the downlink signals, generated from multiple spread codes, remains a serious problem...OFDM-CDMA is an attractive technique for broadband wireless communication. However, the high peakto-average power ratio (PAPR) of the downlink signals, generated from multiple spread codes, remains a serious problem. In this paper, a low-complexity multiple signal representation (MSR) scheme is proposed to control the PAPR problem in downlink OFDM-CDMA systems. The proposed scheme generates multiple candidate signals by a novel user grouping scheme, which is without distortion and can provide more PAPR reduction than the conventional MSR schemes, such as partial transmit sequence (PTS) and selective mapping (SLM). Furthermore, a low-complexity processing structure is developed using a novel joint spreading and inverse fast Fourier transform (S-IFFT) to simplify the generation of multiple candidate signals. Complexity analysis and numerical results show that the OFDM-CDMA systems employing the proposed scheme have better tradeoff between PAPR reduction and computational complexity, compared with the conventional MSR schemes.展开更多
This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which us...This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which uses two interfering subsets in order to improve the performance of the transmission scheme. The idea is to spread in a coherent manner some data amongst two different codes belonging to the two different subsets involved in complex orthogonal frequency-division multiplexing with quadrature amplitude modulation and code division multiplexing access. This will improve the useful signal level at the receiving side and therefore improve the decoding process especially at low signal to noise ratio. However, this procedure implies some interference with other codes therefore creating a certain noise which is noticeable at high signal to noise ratio.展开更多
文摘In the paper, a novel method, which exploits both the Orthogonal Frequency Division Multiplexing (OFDM)-Code Division Multiple Access (CDMA) technique and the time reversal mirror technique, is investigated to realize multi-user underwater acoustic communication. By taking advantages of these two techniques, the proposed method has the capability of effectively suppressing multi-path interference, reducing the error rate, enhancing the processing gain and improving user capacity. Simulations verify the correctness and effectiveness of the proposed method.
基金Supported in part by DoCoMo Beijing Labs Co., Ltd., International Sci. & Tech. Cooperation Project of the Ministry of Sci. & Tech. of China(Grant No. 2008DFA11700)the National Natural Science Foundation of China (Grant Nos. 60902026, 60602008)
文摘OFDM-CDMA is an attractive technique for broadband wireless communication. However, the high peakto-average power ratio (PAPR) of the downlink signals, generated from multiple spread codes, remains a serious problem. In this paper, a low-complexity multiple signal representation (MSR) scheme is proposed to control the PAPR problem in downlink OFDM-CDMA systems. The proposed scheme generates multiple candidate signals by a novel user grouping scheme, which is without distortion and can provide more PAPR reduction than the conventional MSR schemes, such as partial transmit sequence (PTS) and selective mapping (SLM). Furthermore, a low-complexity processing structure is developed using a novel joint spreading and inverse fast Fourier transform (S-IFFT) to simplify the generation of multiple candidate signals. Complexity analysis and numerical results show that the OFDM-CDMA systems employing the proposed scheme have better tradeoff between PAPR reduction and computational complexity, compared with the conventional MSR schemes.
文摘This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which uses two interfering subsets in order to improve the performance of the transmission scheme. The idea is to spread in a coherent manner some data amongst two different codes belonging to the two different subsets involved in complex orthogonal frequency-division multiplexing with quadrature amplitude modulation and code division multiplexing access. This will improve the useful signal level at the receiving side and therefore improve the decoding process especially at low signal to noise ratio. However, this procedure implies some interference with other codes therefore creating a certain noise which is noticeable at high signal to noise ratio.