期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Progress in the generation of spinal cord organoids over the past decade and future perspectives
1
作者 Gang Zhou Siyuan Pang +1 位作者 Yongning Li Jun Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1013-1019,共7页
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo.As emerging bioengineering methods have... Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo.As emerging bioengineering methods have led to the optimization of cell culture protocols,spinal cord organoids technology has made remarkable advancements in the past decade.Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes.Moreover,fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment.These qualities make spinal cord organoids valuable tools for disease modeling,drug screening,and tissue regeneration.By utilizing this emergent technology,researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases.However,at present,spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine.Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation. 展开更多
关键词 development organoid-on-a-chip pluripotent stem cells PROGRESS spinal cord diseases spinal cord organoids VASCULARIZATION
下载PDF
Loss of SHROOM3 affects neuroepithelial cell shape through regulating cytoskeleton proteins in cynomolgus monkey organoids
2
作者 Peng Li Ting Zhang +7 位作者 Ruo Wu Jun-Yu Zhang Yan Zhuo Shan-Gang Li Jiao-Jian Wang Wen-Ting Guo Zheng-Bo Wang Yong-Chang Chen 《Zoological Research》 SCIE CSCD 2024年第2期233-241,共9页
Neural tube defects(NTDs)are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure.Although folate supplementation has been shown to mitigate the incidence of NTDs,some cases,often... Neural tube defects(NTDs)are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure.Although folate supplementation has been shown to mitigate the incidence of NTDs,some cases,often attributable to genetic factors,remain unpreventable.The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation;at present,however,the underlying mechanism remains unclear.Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate.To determine the role of SHROOM3 in early developmental morphogenesis,we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase.Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei.These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins,namely fibrous actin(F-actin),myosin II,and phospho-myosin light chain(PMLC),to the apical side of the neuroepithelial cells.Notably,these defects were not rescued by folate supplementation.RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis.In summary,we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation. 展开更多
关键词 Neural tube defects SHROOM3 NEUROEPITHELIAL organoids Cynomolgus monkey
下载PDF
Advances in the study of gastric organoids as disease models
3
作者 Yi-Yang Liu De-Kun Wu +2 位作者 Ji-Bing Chen You-Ming Tang Feng Jiang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期1725-1736,共12页
Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques.These models have shown great promise in providing valuable insights into gastric phy... Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques.These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research.This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids,and patient-derived organoids.The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed.The construction of gastric organoids involves several key steps,including cell extraction and culture,three-dimensional structure formation,and functional expression.Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori.In addition,in drug screening and development,gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials.They can also be used for precision medicine according to the specific conditions of patients with gastric cancer,to assess drug resistance,and to predict the possibility of adverse reactions.However,despite the impressive progress in the field of gastric organoids,there are still many unknowns that need to be addressed,especially in the field of regenerative medicine.Meanwhile,the reproducibility and consistency of organoid cultures are major challenges that must be overcome.These challenges have had a significant impact on the development of gastric organoids.Nonetheless,as technology continues to advance,we can foresee more comprehensive research in the construction of gastric organoids.Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine. 展开更多
关键词 organoids Stomach neoplasms Helicobacter pylori Drug evaluation PRECLINICAL PRECISION
下载PDF
Human pluripotent stem cell-derived kidney organoids:Current progress and challenges
4
作者 Hong-Yan Long Zu-Ping Qian +4 位作者 Qin Lan Yong-Jie Xu Jing-Jing Da Fu-Xun Yu Yan Zha 《World Journal of Stem Cells》 SCIE 2024年第2期114-125,共12页
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene... Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted. 展开更多
关键词 KIDNEY organoids Human pluripotent stem cell Development Vascular system Disease modeling
下载PDF
The generation and properties of human cortical organoids as a disease model for malformations of cortical development 被引量:1
5
作者 Xiu-Ping Zhang Xi-Yuan Wang +1 位作者 Shu-Na Wang Chao-Yu Miao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2119-2126,共8页
As three-dimensional“organ-like”aggregates,human cortical organoids have emerged as powerful models for studying human brain evolution and brain disorders with unique advantages of humanspecificity,fidelity and mani... As three-dimensional“organ-like”aggregates,human cortical organoids have emerged as powerful models for studying human brain evolution and brain disorders with unique advantages of humanspecificity,fidelity and manipulation.Human cortical organoids derived from human pluripotent stem cells can elaborately replicate many of the key properties of human cortical development at the molecular,cellular,structural,and functional levels,including the anatomy,functional neural network,and interaction among different brain regions,thus facilitating the discovery of brain development and evolution.In addition to studying the neuro-electrophysiological features of brain cortex development,human cortical organoids have been widely used to mimic the pathophysiological features of cortical-related disease,especially in mimicking malformations of cortical development,thus revealing pathological mechanism and identifying effective drugs.In this review,we provide an overview of the generation of human cortical organoids and the properties of recapitulated cortical development and further outline their applications in modeling malformations of cortical development including pathological phenotype,underlying mechanisms and rescue strategies. 展开更多
关键词 cortical development disease models human cortical organoids human cortical spheroids human pluripotent stem cells malformations of cortical development telencephalon organoids whole brain organoids
下载PDF
Brain organoids are new tool for drug screening of neurological diseases 被引量:1
6
作者 Jin-Qi Zhou Ling-Hui Zeng +5 位作者 Chen-Tao Li Da-Hong He Hao-Duo Zhao Yan-Nan Xu Zi-Tian Jin Chong Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1884-1889,共6页
At the level of in vitro drug screening,the development of a phenotypic analysis system with highcontent screening at the core provides a strong platform to support high-throughput drug screening.There are few systema... At the level of in vitro drug screening,the development of a phenotypic analysis system with highcontent screening at the core provides a strong platform to support high-throughput drug screening.There are few systematic reports on brain organoids,as a new three-dimensional in vitro model,in terms of model stability,key phenotypic fingerprint,and drug screening schemes,and particula rly rega rding the development of screening strategies for massive numbers of traditional Chinese medicine monomers.This paper reviews the development of brain organoids and the advantages of brain organoids over induced neurons or cells in simulated diseases.The paper also highlights the prospects from model stability,induction criteria of brain organoids,and the screening schemes of brain organoids based on the characteristics of brain organoids and the application and development of a high-content screening system. 展开更多
关键词 brain organoids disease modeling high-content system multiple omic analysis network pharmacology NEURODEGENERATION phenotypic fingerprint psychiatric diseases stem cells traditional Chinese medicine drug screening
下载PDF
A quick and reliable image-based AI algorithm for evaluating cellular senescence of gastric organoids 被引量:1
7
作者 Ruixin Yang Yutong Du +7 位作者 Wingyan Kwan Ranlin Yan Qimeng Shi Lu Zang Zhenggang Zhu Jianming Zhang Chen Li Yingyan Yu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第7期519-536,共18页
Objective:Organoids are a powerful tool with broad application prospects in biomedicine.Notably,they provide alternatives to animal models for testing potential drugs before clinical trials.However,the number of passa... Objective:Organoids are a powerful tool with broad application prospects in biomedicine.Notably,they provide alternatives to animal models for testing potential drugs before clinical trials.However,the number of passages for which organoids maintain cellular vitality ex vivo remains unclear.Methods:Herein,we constructed 55 gastric organoids from 35 individuals,serially passaged the organoids,and captured microscopic images for phenotypic evaluation.Senescence-associatedβ-galactosidase(SA-β-Gal),cell diameter in suspension,and gene expression reflecting cell cycle regulation were examined.The YOLOv3 object detection algorithm integrated with a convolutional block attention module(CBAM)was used to evaluate organoid vitality.Results:SA-β-Gal staining intensity;single-cell diameter;and expression of p15,p16,p21,CCNA2,CCNE2,and LMNB1 reflected the progression of aging in organoids during passaging.The CBAM-YOLOv3 algorithm precisely evaluated aging organoids on the basis of organoid average diameter,organoid number,and number×diameter,and the findings positively correlated with SA-β-Gal staining and single-cell diameter.Organoids derived from normal gastric mucosa had limited passaging ability(passages 1–5),before aging,whereas tumor organoids showed unlimited passaging potential for more than 45 passages(511 days)without showing clear senescence.Conclusions:Given the lack of indicators for evaluating organoid growth status,we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality.This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks. 展开更多
关键词 Gastric cancer organoids cellular senescence senescence-associatedβ-galactosidase artificial intelligence
下载PDF
Development of glioblastoma organoids and their applications in personalized therapy
8
作者 Can Xu Xiaoye Yuan +4 位作者 Pengyu Hou Ziru Li Changsheng Wang Chuan Fang Yanli Tan 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第5期353-368,共16页
Glioblastomas(GBMs)are the brain tumors with the highest malignancy and poorest prognoses.GBM is characterized by high heterogeneity and resistance to drug treatment.Organoids are 3-dimensional cultures that are const... Glioblastomas(GBMs)are the brain tumors with the highest malignancy and poorest prognoses.GBM is characterized by high heterogeneity and resistance to drug treatment.Organoids are 3-dimensional cultures that are constructed in vitro and comprise cell types highly similar to those in organs or tissues in vivo,thus simulating specific structures and physiological functions of organs.Organoids have been technically developed into an advanced ex vivo disease model used in basic and preclinical research on tumors.Brain organoids,which simulate the brain microenvironment while preserving tumor heterogeneity,have been used to predict patients’therapeutic responses to antitumor drugs,thus enabling a breakthrough in glioma research.GBM organoids provide an effective supplementary model that reflects human tumors’biological characteristics and functions in vitro more directly and accurately than traditional experimental models.Therefore,GBM organoids are widely applicable in disease mechanism research,drug development and screening,and glioma precision treatments.This review focuses on the development of various GBM organoid models and their applications in identifying new individualized therapies against drug-resistant GBM. 展开更多
关键词 GLIOBLASTOMA organoids glioma stem cell drug screening
下载PDF
Organoids revealed:morphological analysis of the profound next generation in-vitro model with artificial intelligence
9
作者 Xuan Du Zaozao Chen +5 位作者 Qiwei Li Sheng Yang Lincao Jiang Yi Yang Yanhui Li Zhongze Gu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期319-339,共21页
In modern terminology,“organoids”refer to cells that grow in a specific three-dimensional(3D)environment in vitro,sharing similar structures with their source organs or tissues.Observing themorphology or growth char... In modern terminology,“organoids”refer to cells that grow in a specific three-dimensional(3D)environment in vitro,sharing similar structures with their source organs or tissues.Observing themorphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis.However,it is difficult,time-consuming,and inaccurate to screen and analyze organoids only manually,a problem which cannot be easily solved with traditional technology.Artificial intelligence(AI)technology has proven to be effective in many biological and medical research fields,especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices.When used to analyze organoids,AI should also provide more efficient,quantitative,accurate,and fast solutions.In this review,we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods.Secondly,we will summarize the development from machine learning to deep learning and the advantages of the latter,and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis.Finally,we will discuss the limitations of current AI used in organoid research,as well as opportunities and future research directions. 展开更多
关键词 Artificial intelligence organoids MORPHOLOGY Growth characteristics Deep learning Convolutional neural network
下载PDF
Mini-organs with big impact:Organoids in liver cancer studies
10
作者 MUHAMMAD BABAR KHAWAR YAJUN WANG +3 位作者 ANEEQA MAJEED ALI AFZAL KABEER HANEEF HAIBO SUN 《Oncology Research》 SCIE 2023年第5期677-688,共12页
Hepatocellular carcinoma,the most common primary liver cancer and a leading cause of death,is a difficult disease to treat due to its heterogeneous nature.Traditional models,such as 2D culture and patient-derived xeno... Hepatocellular carcinoma,the most common primary liver cancer and a leading cause of death,is a difficult disease to treat due to its heterogeneous nature.Traditional models,such as 2D culture and patient-derived xenografts,have not proven effective.However,the development of 3D culture techniques,such as organoids,which can mimic the tumor microenvironment(TME)and preserve heterogeneity and pathophysiological properties of tumor cells,offers new opportunities for treatment and research.Organoids also have the potential for biomarker detection and personalized medication,as well as genome editing using CRISPR/Cas9 to study the behavior of certain genes and therapeutic interventions.This review explores to-the-date development of organoids with a focus on TME modeling in 3D organoid cultures.Further,it discusses gene editing using CRISPR/Cas9 in organoids,the challenges faced,and the prospects in the field of organoids. 展开更多
关键词 HETEROGENEITY Tumor Organoid Liver Treatment Therapy
下载PDF
Benchmark for establishment of organoids from gastrointestinal epithelium and cancer based on available consumables and reagents
11
作者 Ruixin Yang Zhen Xiang +8 位作者 Ranlin Yan Wingyan Kwan Lu Zang Zhenggang Zhu Yao Qi Yanping Xu Xiaoyan Zhang Hengjun Gao Yingyan Yu 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2023年第6期636-644,共9页
Gastrointestinal cancers are a public health problem that threatens the lives of human being. A good experimental model is a powerful tool to promote the uncovering pathogenesis and establish novel treatment methods. ... Gastrointestinal cancers are a public health problem that threatens the lives of human being. A good experimental model is a powerful tool to promote the uncovering pathogenesis and establish novel treatment methods. High-quality biomedical research requires experimental models to recapitulate the physiological and pathological states of their parental tissues as much as possible. Organoids are such experimental models. Organoids refer to small organlike cellular clusters formed by the expansion and passaging of living tissues in 3D culture medium in vitro.Organoids are highly similar to the original tissues in terms of cellular composition, cell functions, and genomic profiling. Organoids have many advantages, such as short preparation cycles, long-term storage based on cryopreservation, and reusability. In recent years, researchers carried out the establishment of organoids from gastrointestinal mucosa and cancer tissues, and accumulated valuable experiences. In order to promote effective usage and further development of organoid-related technologies in the research of gastrointestinal diseases, this study proposes a benchmark based on utilization of available experimental consumables and reagents, which are involved in the key steps such as collection and pretreatment of biospecimen, organoid construction, organoid cryopreservation and recovery, growth status evaluation, and organoid quality control. We believe that the standard for the construction and preservation of organoids derived from human gastrointestinal epithelium and cancer tissues can provide an important reference for the majority of scientific researchers. 展开更多
关键词 Organoid construction gastrointestinal epithelium gastrointestinal carcinoma methods
下载PDF
Influence of hypoxia on retinal progenitor and ganglion cells in human induced pluripotent stem cell-derived retinal organoids
12
作者 Jin-Lin Du Li-Xiong Gao +7 位作者 Tao Wang Zi Ye Hong-Yu Li Wen Li Quan Zeng Jia-Fei Xi Wen Yue Zhao-Hui Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第10期1574-1581,共8页
AIM:To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell(hiPSC)-derived retinal organoids(ROs).METHODS:The hiPSC and a three-dimensional culture method were use... AIM:To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell(hiPSC)-derived retinal organoids(ROs).METHODS:The hiPSC and a three-dimensional culture method were used for the experiments.Generated embryoid bodies(EBs)were randomly and equally divided into hypoxic and normoxic groups.Photographs of the EBs were taken on days 38,45,and 52,and the corresponding volume of EBs was calculated.Simultaneously,samples were collected at these three timepoints,followed by fixation,sectioning,and immunofluorescence.RESULTS:The proportion of Ki67-positive proliferating cells increased steadily on day 38;this proliferationpromoting effect tended to increase tissue density rather than tissue volume.On days 45 and 52,the two groups had relatively similar ratios of Ki67-positive cells.Further immunofluorescence analysis showed that the ratio of SOX2-positive cells significantly increased within the neural retina on day 52(P<0.05).In contrast,the percentage of PAX6-and CHX10-positive cells significantly decreased following hypoxia treatment at all three timepoints(P<0.01),except for CHX10 at day 45(P>0.05).Moreover,the proportion of PAX6-/TUJ1+cells within the neural retinas increased considerably(P<0.01,<0.05,<0.05 respectively).CONCLUSION:Low oxygen promotes stemness and proliferation of neural retinas,suggesting that hypoxic conditions can enlarge the retinal progenitor cell pool in hiPSC-derived ROs. 展开更多
关键词 HYPOXIA retinal organoid retinal progenitor cells retinal ganglion cells
原文传递
Optimization of Culture Medium and Transfection Method for Head and Neck Squamous Cell Carcinoma Organoids
13
作者 Zhongheng HUANG Xi YAO +2 位作者 Qi LIU Ying XIE Zhengbo WEI 《Medicinal Plant》 CAS 2023年第3期100-104,共5页
[Objectives] To optimize the culture medium for head and neck squamous cell carcinoma patient-derived organoid and screen suitable cytokines;compare the transfection efficiency of direct transfection and short-term su... [Objectives] To optimize the culture medium for head and neck squamous cell carcinoma patient-derived organoid and screen suitable cytokines;compare the transfection efficiency of direct transfection and short-term suspension transfection for organoid in matrigel. [Methods] Advanced DMEM/F12 medium, GlutaMax and HEPES buffer, nicotinamide, N-acetylcysteine, B27, A83-01, EGF, Y-27632 and Primocin primary cell antibiotics were prepared. On this basis, fibroblast growth factor 10(FGF10), Neuregulin 1, Noggin and R-spondin-1 were added in turn to prepare the selection medium, and the organoid diameter was used as the evaluation index to evaluate the effect of organoid medium. Using lentivirus, mCherry red fluorescent protein was transfected into HNSCC—PDO in different ways, and the transfection effect was evaluated by the fluorescence intensity of organoid sphere. [Results] Nrg1 Noggin and R-Spondin-1 promoted the growth of head and neck squamous cell carcinoma sphere(P<0.05) while FGF10 did not significantly promote the growth of head and neck squamous cell carcinoma sphere(P>0.05). Compared with direct transfection, short-term suspension transfection had higher transfection efficiency for HNSCC—PDO in matrigel. [Conclusions] R-Spondin-1 Nrg1 and Noggin may be the key cytokines in culture of HNSCC—PDO whereas FGF10 played an insignificant role in this study. Short-term suspension transfection could improve the transfection efficiency of lentivirus to HNSCC—PDO. 展开更多
关键词 Head and neck squamous cell carcinoma Organoid culture Organoid transfection
下载PDF
Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases 被引量:9
14
作者 Jun-Hwan Yoo Mark Donowitz 《World Journal of Gastroenterology》 SCIE CAS 2019年第30期4125-4147,共23页
The introduction of biologics such as anti-tumor necrosis factor(TNF)monoclonal antibodies followed by anti-integrins has dramatically changed the therapeutic paradigm of inflammatory bowel diseases(IBD).Furthermore,a... The introduction of biologics such as anti-tumor necrosis factor(TNF)monoclonal antibodies followed by anti-integrins has dramatically changed the therapeutic paradigm of inflammatory bowel diseases(IBD).Furthermore,a newly developed anti-p40 subunit of interleukin(IL)-12 and IL-23(ustekinumab)has been recently approved in the United States for patients with moderate to severe Crohn’s disease who have failed treatment with anti-TNFs.However,these immunosuppressive therapeutics which focus on anti-inflammatory mechanisms or immune cells still fail to achieve long-term remission in a significant percentage of patients.This strongly underlines the need to identify novel treatment targets beyond immune suppression to treat IBD.Recent studies have revealed the critical role of intestinal epithelial cells(IECs)in the pathogenesis of IBD.Physical,biochemical and immunologic driven barrier dysfunctions of epithelial cells contribute to the development of IBD.In addition,the recent establishment of adult stem cell-derived intestinal enteroid/organoid culture technology has allowed an exciting opportunity to study human IECs comprising all normal epithelial cells.This long-term epithelial culture model can be generated from endoscopic biopsies or surgical resections and recapitulates the tissue of origin,representing a promising platform for novel drug discovery in IBD.This review describes the advantages of intestinal enteroids/organoids as a research tool for intestinal diseases,introduces studies with these models in IBD,and gives a description of the current status of therapeutic approaches in IBD.Finally,we provide an overview of the current endeavors to identify a novel drug target for IBD therapy based on studies with human enteroids/organoids and describe the challenges in using enteroids/organoids as an IBD model. 展开更多
关键词 Enteroids organoids INFLAMMATORY BOWEL diseases Crohn’s disease ULCERATIVE COLITIS
下载PDF
Utilizing gastric cancer organoids to assess tumor biology and personalize medicine 被引量:7
15
作者 Miranda Lin Mei Gao +1 位作者 Michael J Cavnar Joseph Kim 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2019年第7期509-517,共9页
While the incidence and mortality of gastric cancer (GC) have declined due to public health programs, it remains the third deadliest cancer worldwide. For patients with early disease, innovative endoscopic and complex... While the incidence and mortality of gastric cancer (GC) have declined due to public health programs, it remains the third deadliest cancer worldwide. For patients with early disease, innovative endoscopic and complex surgical techniques have improved survival. However, for patients with advanced disease, there are limited treatment options and survival remains poor. Therefore, there is an urgent need for more effective therapies. Since novel therapies require extensive preclinical testing prior to human trials, it is important to identify methods to expedite this process. Traditional cancer models are restricted by the inability to accurately recapitulate the primary human tumor, exorbitant costs, and the requirement for extended periods of development time. An emerging in vitro model to study human disease is the patient-derived organoid, which is a three-dimensional system created from fresh surgical or biopsy tissues of a patient’s gastric tumor. Organoids are cultured in plastic wells and suspended in a gelatinous matrix, providing a substrate for extension and growth in all dimensions. They are rapid-growing and highly representative of the molecular landscape, histology, and morphology of the various subtypes of GC. Organoids uniquely model tumor initiation and growth, including steps taken by normal stomach cells to transform into invasive, intestinal-type tumor cells. Additionally, they provide ample material for biobanking and screening novel therapies. Lastly, organoids are a promising model for personalized therapy and warrant further investigation in drug sensitivity studies for GC patients. 展开更多
关键词 organoids GASTRIC CANCER CANCER models DRUG sensitivity DRUG screening PERSONALIZED MEDICINE
下载PDF
Cerebral organoids exhibit mature neurons and astrocytes and recapitulate electrophysiological activity of the human brain 被引量:4
16
作者 Abraam M.Yakoub 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期757-761,共5页
Multiple protocols have been devised to generate cerebral organoids that recapitulate features of the developing human brain, including the presence of a large, multi-layered, cortical-like neuronal zone. However, the... Multiple protocols have been devised to generate cerebral organoids that recapitulate features of the developing human brain, including the presence of a large, multi-layered, cortical-like neuronal zone. However, the central question is whether these organoids truly present mature, functional neurons and astrocytes, which may qualify the system for in-depth molecular neuroscience studies focused at neuronal and synaptic functions. Here, we demonstrate that cerebral organoids derived under optimal differentiation conditions exhibit mature, fully functional neurons and astrocytes, as validated by immunohistological, gene expression, and electrophysiological, analyses. Neurons in cerebral organoids showed gene expression profiles and electrophysiological properties similar to those reported for fetal human brain. These important findings indicate that cerebral organoids recapitulate the developing human brain and may enhance use of cerebral organoids in modeling human brain development or investigating neural deficits that underlie neurodevelopmental and neuropsychiatric conditions, such as autism or intellectual disorders. 展开更多
关键词 CEREBRAL organoids human brain stem cells NEURONS ASTROCYTES NEURODEVELOPMENTAL DISORDERS neuropsychiatric DISORDERS autism
下载PDF
The promises and challenges of patient-derived tumor organoids in drug development and precision oncology 被引量:5
17
作者 Lauren M.Granat Ooha Kambhampati +3 位作者 Stephanie Klosek Brian Niedzwecki Kian Parsa Dong Zhang 《Animal Models and Experimental Medicine》 CSCD 2019年第3期150-161,共12页
In the era of precision medicine,cancer researchers and oncologists are eagerly searching for more realistic,cost effective,and timely tumor models to aid drug development and precision oncology.Tumor models that can ... In the era of precision medicine,cancer researchers and oncologists are eagerly searching for more realistic,cost effective,and timely tumor models to aid drug development and precision oncology.Tumor models that can faithfully recapitulate the histological and molecular characteristics of various human tumors will be extremely valuable in increasing the successful rate of oncology drug development and discovering the most efficacious treatment regimen for cancer patients.Two‐dimensional(2D)cultured cancer cell lines,genetically engineered mouse tumor(GEMT)models,and patient‐derived tumor xenograft(PDTX)models have been widely used to investigate the biology of various types of cancers and test the efficacy of oncology drug candidates.However,due to either the failure to faithfully recapitulate the complexity of patient tumors in the case of 2D cultured cancer cells,or high cost and untimely for drug screening and testing in the case of GEMT and PDTX,new tumor models are urgently needed.The recently developed patient‐derived tumor organoids(PDTO)offer great potentials in uncovering novel biology of cancer development,accelerating the discovery of oncology drugs,and individualizing the treatment of cancers.In this review,we will summarize the recent progress in utilizing PDTO for oncology drug discovery.In addition,we will discuss the potentials and limitations of the current PDTO tumor models. 展开更多
关键词 drug testing PATIENT DERIVED TUMOR organoids PRECISION ONCOLOGY TUMOR models
下载PDF
Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells-possibilities and current limitations 被引量:2
18
作者 Kristine Karla Freude Sarkis Saruhanian +7 位作者 Alanna McCauley Colton Paterson Madeleine Odette Annika Oostenink Poul Hyttel Mark Gillies Henriette Haukedal Miriam Kolko 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1171-1183,共13页
BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in variou... BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells(RGCs)and Müller glia.AIM To refine human-induced pluripotent stem cells(hiPSCs)differentiated into threedimensional(3D)retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.METHODS In this study we described,evaluated,and refined methods with which to generate Müller glia and RGC progenitors,isolated them via magnetic-activated cell sorting,and assessed their lineage stability after prolonged 2D culture.Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry,and the ultrastructural composition of retinal organoid cells was investigated.RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids.Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies. 展开更多
关键词 Human induced pluripotent stem cells Retinal organoids Retinal ganglion cells Müller glia Progenitors Cell-type enrichment
下载PDF
Organoids of liver diseases: From bench to bedside 被引量:1
19
作者 Li-Jun Wu Zi-Yan Chen +3 位作者 Yi Wang Jun-Gang Zhao Xiao-Zai Xie Gang Chen 《World Journal of Gastroenterology》 SCIE CAS 2019年第16期1913-1927,共15页
Understanding the occurrence, development, and treatment of liver diseases is the main goal of hepatopathology research. Liver diseases are not only diverse but also highly heterogeneous among individuals. At present,... Understanding the occurrence, development, and treatment of liver diseases is the main goal of hepatopathology research. Liver diseases are not only diverse but also highly heterogeneous among individuals. At present, research on liver diseases is conducted mainly through cell culture, animal models, pathological specimens, etc. However, these methods cannot fully reveal the pathogenic mechanism and therapeutic characteristics of individualized liver diseases.Recent advances in three-dimensional cell culture technology(organoid culture techniques) include pluripotent stem cells and adult stem cells that are cultured in vitro to form self-organizing properties, making it possible to achieve individualized liver disease research. This review provides a comprehensive overview of the development of liver organoids, the existing and potential applications of liver regenerative medicine, the pathogenesis of liver disease heterogeneity, and drug screening. 展开更多
关键词 organoids LIVER DISEASES Individualized research LIVER cancer Threedimensional cell CULTURE LIVER organoids
下载PDF
Living biobank-based cancer organoids: prospects and challenges in cancer research 被引量:1
20
作者 Haixin Li Hongkun Liu Kexin Chen 《Cancer Biology & Medicine》 SCIE CAS CSCD 2022年第7期965-982,共18页
Biobanks bridge the gap between basic and translational research.Traditional cancer biobanks typically contain normal and tumor tissues,and matched blood.However,biospecimens in traditional biobanks are usually nonren... Biobanks bridge the gap between basic and translational research.Traditional cancer biobanks typically contain normal and tumor tissues,and matched blood.However,biospecimens in traditional biobanks are usually nonrenewable.In recent years,increased interest has focused on establishing living biobanks,including organoid biobanks,for the collection and storage of viable and functional tissues for long periods of time.The organoid model is based on a 3D in vitro cell culture system,is highly similar to primary tissues and organs in vivo,and can recapitulate the phenotypic and genetic characteristics of target organs.Publications on cancer organoids have recently increased,and many types of cancer organoids have been used for modeling cancer processes,as well as for drug discovery and screening.On the basis of the current research status,more exploration of cancer organoids through technical advancements is required to improve reproducibility and scalability.Moreover,given the natural characteristics of organoids,greater attention must be paid to ethical considerations.Here,we summarize recent advances in cancer organoid biobanking research,encompassing rectal,gastric,pancreatic,breast,and glioblastoma cancers.Living cancer biobanks that contain cancerous tissues and matched organoids with different genetic backgrounds,subtypes,and individualized characteristics will eventually contribute to the understanding of cancer and ultimately facilitate the development of innovative treatments. 展开更多
关键词 Cancer organoids living biobanks BIOBANK preclinical models
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部