Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci...Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This pa...Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.展开更多
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e...Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.展开更多
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers a...This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers are more sensitive to different hyperparameters of optimizers,which leads to a lack of stability and slow convergence.To tackle these challenges,we propose the Convolution-based Efficient Transformer Image Feature Extraction Network(CEFormer)as an enhancement of the Transformer architecture.Our model incorporates E-Attention,depthwise separable convolution,and dilated convolution to introduce crucial inductive biases,such as translation invariance,locality,and scale invariance,into the Transformer framework.Additionally,we implement a lightweight convolution module to process the input images,resulting in faster convergence and improved stability.This results in an efficient convolution combined Transformer image feature extraction network.Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed.It achieves up to 85.0%accuracy across various model sizes on image classification,outperforming various baseline models.When integrated into the Mask Region-ConvolutionalNeuralNetwork(R-CNN)framework as a backbone network,CEFormer outperforms other models and achieves the highest mean Average Precision(mAP)scores.This research presents a significant advancement in Transformer-based image feature extraction,balancing performance and computational efficiency.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
Dear Editor,This letter presents an organoid segmentation model based on multi-axis attention with convolution parallel block.MACPNet adeptly captures dynamic dependencies within bright-field microscopy images,improvi...Dear Editor,This letter presents an organoid segmentation model based on multi-axis attention with convolution parallel block.MACPNet adeptly captures dynamic dependencies within bright-field microscopy images,improving global modeling beyond conventional UNet.展开更多
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th...Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.展开更多
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca...Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t...In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.展开更多
In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convoluti...In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets.展开更多
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively...The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.展开更多
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net...The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.展开更多
Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer l...Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer learningenhanced convolutional neural network(CNN)was proposed to identify the gross weight and the axle weight of moving vehicles on the bridge.The proposed transfer learning-enhanced CNN model was expected to weigh different bridges based on a small amount of training datasets and provide high identification accuracy.First of all,a CNN algorithm for bridge weigh-in-motion(B-WIM)technology was proposed to identify the axle weight and the gross weight of the typical two-axle,three-axle,and five-axle vehicles as they crossed the bridge with different loading routes and speeds.Then,the pre-trained CNN model was transferred by fine-tuning to weigh themoving vehicle on another bridge.Finally,the identification accuracy and the amount of training data required were compared between the two CNN models.Results showed that the pre-trained CNN model using transfer learning for B-WIM technology could be successfully used for the identification of the axle weight and the gross weight for moving vehicles on another bridge while reducing the training data by 63%.Moreover,the recognition accuracy of the pre-trained CNN model using transfer learning was comparable to that of the original model,showing its promising potentials in the actual applications.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integrat...The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene comprehension.This paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an image.The methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet architecture.Afterward,we use an annotation tool to accurately label the segmented regions.Upon labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob characteristics.For the classification stage,a convolution neural network(CNN)is employed.This comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in images.The experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been documented.After analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance.展开更多
In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhanc...In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhance the ability of autonomous driving systems to recognize traffic participants.The algorithmincorporates long and shortterm memory networks and the fused attention module(GSAM,GCT,and Spatial Attention Module)to enhance the algorithm’s capability to process both global and local information.Additionally,to increase the network’s initial operation stability,the original network activation function was replaced with Gaussian error linear unit.Experiments were conducted using the publicly available Cityscapes dataset.Comparing the test results,it was observed that the revised algorithmoutperformed the original algorithmin terms of AP_(50),AP_(75),and othermetrics by 8.7%and 9.6%for target detection and 12.5%and 13.3%for segmentation.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52272433 and 11874110)Jiangsu Provincial Key R&D Program(Grant No.BE2021084)Technical Support Special Project of State Administration for Market Regulation(Grant No.2022YJ11).
文摘Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
基金supported by the National Natural Science Foundation of China through the Project of Research of Flexible and Adaptive Arc-Suppression Method for Single-Phase Grounding Fault in Distribution Networks(No.51677030).
文摘Effective features are essential for fault diagnosis.Due to the faint characteristics of a single line-to-ground(SLG)fault,fault line detection has become a challenge in resonant grounding distribution systems.This paper proposes a novel fault line detection method using waveform fusion and one-dimensional convolutional neural networks(1-D CNN).After an SLG fault occurs,the first-half waves of zero-sequence currents are collected and superimposed with each other to achieve waveform fusion.The compelling feature of fused waveforms is extracted by 1-D CNN to determine whether the fused waveform source contains the fault line.Then,the 1-D CNN output is used to update the value of the counter in order to identify the fault line.Given the lack of fault data in existing distribution systems,the proposed method only needs a small quantity of data for model training and fault line detection.In addition,the proposed method owns fault-tolerant performance.Even if a few samples are misjudged,the fault line can still be detected correctly based on the full output results of 1-D CNN.Experimental results verified that the proposed method can work effectively under various fault conditions.
基金financial support provided by the Future Energy System at University of Alberta and NSERC Discovery Grant RGPIN-2023-04084。
文摘Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations.
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
基金Support by Sichuan Science and Technology Program(2021YFQ0003,2023YFSY 0026,2023YFH0004).
文摘This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers are more sensitive to different hyperparameters of optimizers,which leads to a lack of stability and slow convergence.To tackle these challenges,we propose the Convolution-based Efficient Transformer Image Feature Extraction Network(CEFormer)as an enhancement of the Transformer architecture.Our model incorporates E-Attention,depthwise separable convolution,and dilated convolution to introduce crucial inductive biases,such as translation invariance,locality,and scale invariance,into the Transformer framework.Additionally,we implement a lightweight convolution module to process the input images,resulting in faster convergence and improved stability.This results in an efficient convolution combined Transformer image feature extraction network.Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed.It achieves up to 85.0%accuracy across various model sizes on image classification,outperforming various baseline models.When integrated into the Mask Region-ConvolutionalNeuralNetwork(R-CNN)framework as a backbone network,CEFormer outperforms other models and achieves the highest mean Average Precision(mAP)scores.This research presents a significant advancement in Transformer-based image feature extraction,balancing performance and computational efficiency.
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金supported by the Xinjiang Tianchi Talents Program(E33B9401)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2023D01E15)+1 种基金the National Natural Science Foundation of China(62302495)the National Natural Science Foundation of China(62373348)。
文摘Dear Editor,This letter presents an organoid segmentation model based on multi-axis attention with convolution parallel block.MACPNet adeptly captures dynamic dependencies within bright-field microscopy images,improving global modeling beyond conventional UNet.
基金the Gansu University of Political Science and Law Key Research Funding Project in 2018(GZF2018XZDLW20)Gansu Provincial Science and Technology Plan Project(Technology Innovation Guidance Plan)(20CX9ZA072).
文摘Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.
基金supported by the National Natural Science Foundation of China-China State Railway Group Co.,Ltd.Railway Basic Research Joint Fund (Grant No.U2268217)the Scientific Funding for China Academy of Railway Sciences Corporation Limited (No.2021YJ183).
文摘Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai Municipality,China(Grant No.21ZR1443900)。
文摘In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.
文摘In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets.
基金supported by the National Natural Science Foundation of China (Nos.52274048 and 52374017)Beijing Natural Science Foundation (No.3222037)the CNPC 14th five-year perspective fundamental research project (No.2021DJ2104)。
文摘The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages.
基金This research was supported by the Key Research and Development Program of Shaanxi Province(2024GX-YBXM-010)the National Science Foundation of China(61972302).
文摘The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.52208213)the Excellent Youth Foundation of Education Department in Hunan Province(Grant No.22B0141)+1 种基金the Xiaohe Sci-Tech Talents Special Funding under Hunan Provincial Sci-Tech Talents Sponsorship Program(2023TJ-X65)the Science Foundation of Xiangtan University(Grant No.21QDZ23).
文摘Transfer learning could reduce the time and resources required by the training of new models and be therefore important for generalized applications of the trainedmachine learning algorithms.In this study,a transfer learningenhanced convolutional neural network(CNN)was proposed to identify the gross weight and the axle weight of moving vehicles on the bridge.The proposed transfer learning-enhanced CNN model was expected to weigh different bridges based on a small amount of training datasets and provide high identification accuracy.First of all,a CNN algorithm for bridge weigh-in-motion(B-WIM)technology was proposed to identify the axle weight and the gross weight of the typical two-axle,three-axle,and five-axle vehicles as they crossed the bridge with different loading routes and speeds.Then,the pre-trained CNN model was transferred by fine-tuning to weigh themoving vehicle on another bridge.Finally,the identification accuracy and the amount of training data required were compared between the two CNN models.Results showed that the pre-trained CNN model using transfer learning for B-WIM technology could be successfully used for the identification of the axle weight and the gross weight for moving vehicles on another bridge while reducing the training data by 63%.Moreover,the recognition accuracy of the pre-trained CNN model using transfer learning was comparable to that of the original model,showing its promising potentials in the actual applications.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)Program(IITP-2024-RS-2022-00156326)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)+2 种基金The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/GP/SERC/13/30)funding for this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the Project Number“NBU-FFR-2024-231-06”.
文摘The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes.Various technologies,such as augmented reality-driven scene integration,robotic navigation,autonomous driving,and guided tour systems,heavily rely on this type of scene comprehension.This paper presents a novel segmentation approach based on the UNet network model,aimed at recognizing multiple objects within an image.The methodology begins with the acquisition and preprocessing of the image,followed by segmentation using the fine-tuned UNet architecture.Afterward,we use an annotation tool to accurately label the segmented regions.Upon labeling,significant features are extracted from these segmented objects,encompassing KAZE(Accelerated Segmentation and Extraction)features,energy-based edge detection,frequency-based,and blob characteristics.For the classification stage,a convolution neural network(CNN)is employed.This comprehensive methodology demonstrates a robust framework for achieving accurate and efficient recognition of multiple objects in images.The experimental results,which include complex object datasets like MSRC-v2 and PASCAL-VOC12,have been documented.After analyzing the experimental results,it was found that the PASCAL-VOC12 dataset achieved an accuracy rate of 95%,while the MSRC-v2 dataset achieved an accuracy of 89%.The evaluation performed on these diverse datasets highlights a notably impressive level of performance.
基金the National Natural Science Foundation of China(52175236)Qingdao People’s Livelihood Science and Technology Plan(19-6-1-88-nsh).
文摘In actual traffic scenarios,precise recognition of traffic participants,such as vehicles and pedestrians,is crucial for intelligent transportation.This study proposes an improved algorithm built on Mask-RCNN to enhance the ability of autonomous driving systems to recognize traffic participants.The algorithmincorporates long and shortterm memory networks and the fused attention module(GSAM,GCT,and Spatial Attention Module)to enhance the algorithm’s capability to process both global and local information.Additionally,to increase the network’s initial operation stability,the original network activation function was replaced with Gaussian error linear unit.Experiments were conducted using the publicly available Cityscapes dataset.Comparing the test results,it was observed that the revised algorithmoutperformed the original algorithmin terms of AP_(50),AP_(75),and othermetrics by 8.7%and 9.6%for target detection and 12.5%and 13.3%for segmentation.