The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to g...The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to gain an in-depth understanding of the film growth process, electronic states, and dynamic structure-property relationship under realistic operation conditions, which can be obtained by in-situ/operando characterization techniques for organic devices. Here, the up-todate developments in the in-situ/operando optical, scanning probe microscopy, and spectroscopy techniques that are employed for studies of film morphological evolution, crystal structures, semiconductor-electrolyte interface properties, and charge carrier dynamics are described and summarized. These advanced technologies leverage the traditional static characterizations into an in-situ and interactive manipulation of organic semiconducting films and devices without sacrificing the resolution, which facilitates the exploration of the intrinsic structure-property relationship of organic materials and the optimization of organic devices for advanced applications.展开更多
Utilizing CO_(2)as a carbon feedstock for producing fuels and useful chemicals is attractive due to the advantages of being abundant,nontoxic,and economical.Electrochemical CO_(2)reduction(CO_(2)RR)provides an avenue ...Utilizing CO_(2)as a carbon feedstock for producing fuels and useful chemicals is attractive due to the advantages of being abundant,nontoxic,and economical.Electrochemical CO_(2)reduction(CO_(2)RR)provides an avenue to close the anthropogenic carbon cycle.However,the reaction process of multi-electronic products of CO_(2)RR is quite complex.It is hard to yield a target product with high selectivity,high current density,low overpotential,and good stability simultaneously.In recent years,in situ/operando characterization techniques have played important roles in the catalysis field via establishing the structure-reactivity/selectivity relationships of catalysts and thereby obtaining information about mechanisms.As a result,it is necessary to apply in situ/operando characterization technologies to clarify the reaction pathway of CO_(2)RR.In this mini-review,we discuss recent progress on the in situ/operando characterizations for electrochemical CO_(2)RR,including microscopies,infrared spectroscopy,Raman spectroscopy,X-ray photoelectron spectroscopy,and X-ray absorption fine spectroscopy.Moreover,the capabilities of these in situ/operando characterizations and the remaining challenges are also discussed.展开更多
The key to achieving the breakthrough of hydrogen energy from marginal energy sources in large scale applications lies in the development and design of efficient electrocatalysts for the electrochemical oxidation and ...The key to achieving the breakthrough of hydrogen energy from marginal energy sources in large scale applications lies in the development and design of efficient electrocatalysts for the electrochemical oxidation and reduction of water.The unique heterostructure endows the catalyst with a mass of functional interfaces that are decisive for the enhancement of catalyst activity,stability,and reaction kinetics.Although some cutting-edge reviews have focused on the synthesis strategies,constitution,and applications of heterostructure catalysts,the field still lacks a detailed discussion of the actual reaction processes occurring at the interface,which is detrimental to the understanding of the true catalytic mechanism.Relying on advanced in situ/operando characterization techniques to understand the working mechanism of heterostructure catalysts is essential for rational design of advanced catalysts.In this review,we first present the advantages of heterostructure catalysts applied to electrolyzing water.Subsequently,the application of in situ/operando techniques in probing three aspects of heterostructure catalyst surface reconstruction,reaction mechanism,and the role of each component is highlighted with classical case studies.Finally,the current challenges and prospects for the design of heterostructure electrocatalysts are discussed in detail.展开更多
As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-...As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-temperature working condition.展开更多
Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious...Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious-metal-free electrocatalysts with superior activity and long-term stability.Tremendous efforts have been made in exploring electrocatalysts to reduce the energy barriers and improve catalytic efficiency.This review summarizes different categories of precious-metal-free electrocatalysts developed in the past 5 years for alkaline water splitting.The design strategies for optimizing the electronic and geometric structures of electrocatalysts with enhanced catalytic performance are discussed,including composition modulation,defect engineering,and structural engineering.Particularly,the advancement of operando/in situ characterization techniques toward the understanding of structural evolution,reaction intermediates,and active sites during the water splitting process are summarized.Finally,current challenges and future perspectives toward achieving efficient catalyst systems for industrial applications are proposed.This review will provide insights and strategies to the design of precious-metalfree electrocatalysts and inspire future research in alkaline water splitting.展开更多
In-depth understanding of the electrolyte-dependent intercalation chemistry in batteries through direct operando/in situ characterizations is crucial for the development of the high-performance batteries.Herein,taking...In-depth understanding of the electrolyte-dependent intercalation chemistry in batteries through direct operando/in situ characterizations is crucial for the development of the high-performance batteries.Herein,taking the Al/graphite battery as a model system,the effect of electrolyte coordination structure on the intercalation processes has been investigated over the batteries with either 1-hexyl-3-methylimidazolium chloride(HMICl)-AlCl_(3) or 1-ethyl-3-methylimidazolium chloride(EMICl)-AlCl_(3) ionic liquid electrolyte using operando X-ray photoelectron spectroscopy(XPS)and X-ray diffraction.With a weaker anion-cation interaction in HMI-based electrolyte,the XPS-derived atomic ratio between cointercalated N and intercalated Al is 0.9,which is lower than 1.6 for EMI-based electrolyte.Attributed to the additional de-solvation process,the batteries with the HMI-based electrolyte show a lower ionic diffusion rate,capacity,and cycling performance,which agree with the operando characterization results.Our findings highlight the critical role of the electrolyte coordination structure on the(co-)intercalation chemistry.展开更多
Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,su...Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.展开更多
Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery c...Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery cells.Online electrochemical mass spectrometry(OEMS)is an operando gas analysis method that continuously samples the headspace of a custom battery cell.Real-time gas analysis by quantitative OEMS was used to create mechanistic understanding of battery degradation reactions,some of which will be highlight in this article.展开更多
The correlation of electrochemical measurements with materials characterization has advanced our understanding of operation and degradation mechanisms in electrochemical energy storage and many other fields.Yet,often ...The correlation of electrochemical measurements with materials characterization has advanced our understanding of operation and degradation mechanisms in electrochemical energy storage and many other fields.Yet,often these correlations are qualitative,preventing the unambiguous identification of both operational principles and the root causes of performance losses.Here we suggest quantitative approaches to define competing mechanisms and determine their relative contributions.We illustrate the importance of quantitative methodologies over a range of electrochemical systems and highlight the need to consider the effect of the experimental design and measurement itself.These approaches will reveal the most detrimental degradation mechanisms and enable the development of strategies to suppress,stabilize or eliminate them,leading to materials and devices with longer lifetimes,reduced environmental impact,and improved performance.展开更多
Since the 1980s,single-crystal Pt electrodes with well-defined surface structures have been deemed stable under mild electrochemical conditions(e.g.,in the potential region of electric double layers,underpotential dep...Since the 1980s,single-crystal Pt electrodes with well-defined surface structures have been deemed stable under mild electrochemical conditions(e.g.,in the potential region of electric double layers,underpotential deposition of hydrogen,or mild hydrogen evolution/OH adsorption)and have served as model electrodes for unraveling the structure-performance relation in electrocatalysis.With the advancement of in situ electrochemical microscopy/spectroscopy techniques,subtle surface restructuring under mild electrochemical conditions has been achieved in the last decade.Surface restructuring can considerably modify electrocatalytic properties by generating/destroying highly active sites,thereby interfering with the deduction of the structure-performance relation.In this review,we summarize recent progress in the restructuring of well-defined Pt(-based)electrode surfaces under mild electrochemical conditions.The importance of the meticulous structural characterization of Pt electrodes before,during,and after electrochemical measurements is demonstrated using CO adsorption/oxidation,hydrogen adsorption/evolution,and oxygen reduction as examples.The implications of present findings for correctly identifying the reaction mechanisms and kinetics of other electrocatalytic systems are also briefly discussed.展开更多
Supported Pd based catalysts are considered as the efficient candidates for low-carbon alkane oxidation for their outstanding capability to break C-H bond. Whereas, the irreversible deactivation of Pd based catalysts ...Supported Pd based catalysts are considered as the efficient candidates for low-carbon alkane oxidation for their outstanding capability to break C-H bond. Whereas, the irreversible deactivation of Pd based catalysts was still frequently observed. Herein, we reinforced the extruded Pd nanoparticles with quantitive Pt to assemble the evenly distributed Pd Pt nanoalloy onto ferrite perovskite(Pd Pt-LCF) matrix with strengthened robustness of metal/oxide support interface. We further co-achieved the enhanced performance, anti-overoxidation as well as resistance of vapor-poisoning in durability measurement. The operando X-ray photoelectron spectroscopy(O-XPS) combined with various morphology characterizations confirms that the accumulation of surface deep-oxidation species of Pd^(4+) is the culprit for fast activity loss in exsolved Pd system, especially at high temperature of 400 ℃. Conversely, it could be completely suppressed by in-situ alloying Pd with equal amount of Pt, which helps maintain the metastable Pd^(2+)/Pd shell and metallic solid-solution core structure. The density function theory(DFT) calculations further buttress that the dissociation of C–H was facilitated on alloy/perovskite interface which is, on the contrary, resistant toward O–H bond cleavage, as compared to Pd/perovskite. Our work suggests that the modification of exsolved metal/oxide catalytic interface could further enrich the toolkit of heterogeneous catalyst design.展开更多
Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen...Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.展开更多
Rechargeable all-solid-state batteries(ASSBs)are considered to be the next generation of devices for electrochemical energy storage.The development of solid-state electrolytes(SSEs)is one of the most crucial subjects ...Rechargeable all-solid-state batteries(ASSBs)are considered to be the next generation of devices for electrochemical energy storage.The development of solid-state electrolytes(SSEs)is one of the most crucial subjects in the field of energy storage chemistry.The newly emerging halide SSEs have recently been intensively studied for application in ASSBs due to their favorable combination of high ionic conductivity,exceptional chemical and electrochemical stability,and superior mechanical deformability.In this review,a critical overview of the development,synthesis,chemical stability and remaining challenges of halide SSEs is given.The design strategies for optimizing the ionic conductivity of halide SSEs,such as element substitution and crystal structure design,are summarized in detail.Moreover,the associated chemical stability issues in terms of solvent compatibility,humid air stability and corresponding degradation mechanisms are discussed.In particular,advanced in situ/operando characterization techniques applied to halide-based ASSBs are highlighted.In addition,a comprehensive understanding of the interface issues,cost issues,and scalable processing challenges faced by halide-based ASSBs for practical application is provided.Finally,future perspectives on how to design high-performance electrode/electrolyte materials are given,which are instructive for guiding the development of halide-based ASSBs for energy conversion and storage.展开更多
As a unique microprobe for structure and dynamics of materials,neutron possesses superior ability in penetration as well as sensitivity for light and magnetic elements in comparison with X-ray and electron.As for the ...As a unique microprobe for structure and dynamics of materials,neutron possesses superior ability in penetration as well as sensitivity for light and magnetic elements in comparison with X-ray and electron.As for the research and development of lithium-ion batteries(LIBs),neutron diffraction techniques play an indispensable role in exploring the structural properties of various electrode materials,especially the detailed structural evolution of cathode and anode materials during electrochemical cycling.Moreover,based on thorough analysis of neutron diffraction results,an in-depth and systematic understanding of some fundamental mechanisms,such as the formation mechanism of defects and migration mechanism of lithium ions,could also be established,which is essential for the development of high-performance electrode materials for the next-generation LIBs.Nevertheless,that technique would not seem to be widely applied yet in comparison with the application of X-ray diffraction and more attention should be paid.To demonstrate the advantages of neutron diffraction technique in research of LIBs materials,this work systematically summarizes representative neutron diffraction studies on exploring structural details hidden in electrode materials and on probing structural evolution of electrode materials during charge/discharge processes.Prospects for further applications of neutron diffraction techniques in research of LIBs are also put forward.展开更多
The electrochemical oxygen reduction reaction(ORR)is pivotal in energy conversion via a 4e-ORR pathway and green hydrogen peroxide production via 2e-ORR pathway.Transition metal single atom catalysts(TM SACs)have attr...The electrochemical oxygen reduction reaction(ORR)is pivotal in energy conversion via a 4e-ORR pathway and green hydrogen peroxide production via 2e-ORR pathway.Transition metal single atom catalysts(TM SACs)have attracted intense attention in recent years for ORR due to their high activity and near maximum metal atom utilization.The future development of TM SACs for ORR requires improved understanding of reaction pathways,since currently the true origin of activity remains contentious owing to the lack of qualitative/quantitative information about active sites.Knowledge-guided design is imperative for the optimization of TM SACs performance in terms of activity and selectivity.This review focuses on the latest progress in the design of TM SACs for ORR,placing particular attention on efforts to elucidate reaction mechanisms.Experimental evidence based on in-situ/operando characterization measurements,along with theoretical predictions,are summarized to deepen understanding of the structure-performance relationships at both atomic and molecular level.Finally,some perspectives are offered relating to the fundamental science needed for TM SACs to find practical application in energy storage and conversion devices.We hope this review will inspire the development of new synthetic routes towards high-performance ORR electrocatalysts for the energy sector.展开更多
The electrochemical oxygen evolution reaction(OER)plays an important role in many clean electrochemical energy storage and conversion systems,such as electrochemical water splitting,rechargeable metal–air batteries,a...The electrochemical oxygen evolution reaction(OER)plays an important role in many clean electrochemical energy storage and conversion systems,such as electrochemical water splitting,rechargeable metal–air batteries,and electrochemical CO_(2) reduction.However,the OER involves a complex four-electron process and suffers from intrinsically sluggish kinetics,which greatly impairs the efficiency of electrochemical systems.In addition,state-of-the-art RuO2-based OER electrocatalysts are too expensive and scarce for practical applications.The development of highly active,cost-effective,and durable electrocatalysts that can improve OER performance(activity and durability)is of significant importance in realizing the widespread application of these advanced technologies.To date,considerable progress has been made in the development of alternative,noble metal-free OER electrocatalysts.Among these alternative catalysts,transition metal compounds have received particular attention and have shown activities comparable to or even higher than those of their precious metal counterparts.In contrast to many other electrocatalysts,such as carbon-based materials,transition metal compounds often exhibit a surface reconstruction phenomenon that is accompanied by the transformation of valence states during electrochemical OER processes.This surface reconstruction results in changes to the true active sites and an improvement or reduction in OER catalytic performance.Therefore,understanding the self-reconstruction process and precisely identifying the true active sites on electrocatalyst surfaces will help us to finely tune the properties and activities of OER catalysts.This review provides a comprehensive summary of recent progress made in understanding the surface reconstruction phenomena of various transition metal-based OER electrocatalysts,focusing on uncovering the correlations among structure,surface reconstruction and intrinsic activity.Recent advances in OER electrocatalysts that exhibit a surface self-reconstruction capability are also discussed.We identify possible challenges and perspectives for the development of OER electrocatalysts based on surface reconstruction.We hope this review will provide readers with some guidance on the rational design of catalysts for various electrochemical reactions.展开更多
The breaking of nonpolar N≡N bond of dinitrogen is the biggest dilemma for electrocatalytic nitrogen reduction reaction(NRR)application,driving electron migration between catalysts and N≡N bond(termed“πback-donat...The breaking of nonpolar N≡N bond of dinitrogen is the biggest dilemma for electrocatalytic nitrogen reduction reaction(NRR)application,driving electron migration between catalysts and N≡N bond(termed“πback-donation”process)is crucial for attenuating interfacial energy barrier but still remains challenging.Herein,using density functional theory calculations,we revealed that constructing a unique hetero-dicationic Mo^(4+)-Mo^(6+)pair could effectively activate N≡N bond with a lying-down chemisorption configuration by an asymmetrical“πback-donation”process.As a proof-of-concept demonstration,we synthesized MoO_(2)@MoO_(3)heterostructure with double Mo sites(Mo^(4+)-Mo^(6+)),which are embedded in graphite,for electrochemical nitrogen reduction.Impressively,this hetero-dicationic Mo^(4+)-Mo^(6+)pair catalysts display more excellent catalytic performance with a high NH_(3)yield(60.9μg·h^(-1)·mg^(-1))and Faradic efficiency(23.8%)as NRR catalysts under ambient conditions than pristine MoO_(2)and MoO_(3).Operando characterizations using synchrotron-based spectroscopic techniques identified the emergence of a key^(*)N_(2)Hy intermediate on Mo sites during NRR,which indicates that the Mo sites are active sites and the NRR process tends to follow an associative mechanism.This novel type of hetero-dicationic catalyst has tremendous potential as a new class of transition metal-based catalysts with promising applications in electrocatalysis and catalysts for energy conversion and storage.展开更多
Electrocatalytic water splitting,which is recognized as an ideal technology to tackle escalating energy demands and related environmental problems,has attracted growing interest.The sluggish dynamics of the oxygen evo...Electrocatalytic water splitting,which is recognized as an ideal technology to tackle escalating energy demands and related environmental problems,has attracted growing interest.The sluggish dynamics of the oxygen evolution reaction(OER)has posed an intractable problem in this regard,hindering the practical commercial application of hydrogen production via water splitting.Therefore,the development of active and stable electrocatalysts is a prerequisite for accelerating OER kinetics,which greatly relies on the mechanistic understanding of the structural-property relationship.Owing to the harsh anodic oxidation conditions,most of the catalysts undergo surface reconstruction during the OER process,which means the authentic active sites are the in-situ reconstructed species rather than the freshly prepared one.In this regard,fully comprehending the surface reconstruction process will help us to determine the active sites on the catalyst surface and gain insights into the design principles for more efficient OER catalysts.In this review,we will first give a summary of surface reconstruction of OER electrocatalysts.Then we will focus on the factors that affect surface reconstruction,in-situ/operando characterization technologies,and the strategies to govern surface reconstruction.In addition,we outline existing challenges and the outlook for the development of OER catalysts by tuning surface reconstruction.展开更多
基金support from Natural Science Foundation of Jiangsu Province (grant number BK20211507)National Natural Science Foundation of China (grant number 61774080)the start-up funds from Changzhou University。
文摘The increasing demands of multifunctional organic electronics require advanced organic semiconducting materials to be developed and significant improvements to be made to device performance. Thus, it is necessary to gain an in-depth understanding of the film growth process, electronic states, and dynamic structure-property relationship under realistic operation conditions, which can be obtained by in-situ/operando characterization techniques for organic devices. Here, the up-todate developments in the in-situ/operando optical, scanning probe microscopy, and spectroscopy techniques that are employed for studies of film morphological evolution, crystal structures, semiconductor-electrolyte interface properties, and charge carrier dynamics are described and summarized. These advanced technologies leverage the traditional static characterizations into an in-situ and interactive manipulation of organic semiconducting films and devices without sacrificing the resolution, which facilitates the exploration of the intrinsic structure-property relationship of organic materials and the optimization of organic devices for advanced applications.
基金supported by National Natural Science Foundation of China(22002172,22121002)Beijing Natural Science Foundation(J210020)+2 种基金National Key Research and Development Program of China(2020YFA0710203)Chinese Academy of Sciences(QYZDYSSW-SLH013)Photon Science Center for Carbon Neutrality。
文摘Utilizing CO_(2)as a carbon feedstock for producing fuels and useful chemicals is attractive due to the advantages of being abundant,nontoxic,and economical.Electrochemical CO_(2)reduction(CO_(2)RR)provides an avenue to close the anthropogenic carbon cycle.However,the reaction process of multi-electronic products of CO_(2)RR is quite complex.It is hard to yield a target product with high selectivity,high current density,low overpotential,and good stability simultaneously.In recent years,in situ/operando characterization techniques have played important roles in the catalysis field via establishing the structure-reactivity/selectivity relationships of catalysts and thereby obtaining information about mechanisms.As a result,it is necessary to apply in situ/operando characterization technologies to clarify the reaction pathway of CO_(2)RR.In this mini-review,we discuss recent progress on the in situ/operando characterizations for electrochemical CO_(2)RR,including microscopies,infrared spectroscopy,Raman spectroscopy,X-ray photoelectron spectroscopy,and X-ray absorption fine spectroscopy.Moreover,the capabilities of these in situ/operando characterizations and the remaining challenges are also discussed.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.2682022ZTPY049 and 2682020CX57).
文摘The key to achieving the breakthrough of hydrogen energy from marginal energy sources in large scale applications lies in the development and design of efficient electrocatalysts for the electrochemical oxidation and reduction of water.The unique heterostructure endows the catalyst with a mass of functional interfaces that are decisive for the enhancement of catalyst activity,stability,and reaction kinetics.Although some cutting-edge reviews have focused on the synthesis strategies,constitution,and applications of heterostructure catalysts,the field still lacks a detailed discussion of the actual reaction processes occurring at the interface,which is detrimental to the understanding of the true catalytic mechanism.Relying on advanced in situ/operando characterization techniques to understand the working mechanism of heterostructure catalysts is essential for rational design of advanced catalysts.In this review,we first present the advantages of heterostructure catalysts applied to electrolyzing water.Subsequently,the application of in situ/operando techniques in probing three aspects of heterostructure catalyst surface reconstruction,reaction mechanism,and the role of each component is highlighted with classical case studies.Finally,the current challenges and prospects for the design of heterostructure electrocatalysts are discussed in detail.
基金partially supported by the National Natural Science Foundation of China (grant no. 22021001, 22179111)the Ministry of Science and Technology of China (grant no. 2021YFA1201900)+3 种基金the Basic Research Program of Tan Kah Kee Innovation Laboratory (grant no. RD2021070401)the Principal Fund from Xiamen University (grant no. 20720210015)the Fundamental Research Funds for the Central Universities (grant no. 20720220010)the National Natural Science Foundation of China (grant no. 22202082)。
文摘As the rapid development of more powerful and safer lithiumion batteries, the mechanism study of gases evolution is attacking more and more attention in recent years. Especially under overcharge/discharge and/or high-temperature working condition.
基金This study was funded by the Australian Research Council(FT170100224)the Australian Renewable Energy Agency+1 种基金National Natural Science Foundation of China(21825501)the Tsinghua University Initiative Scientific Research Program.
文摘Electrochemical water splitting has attracted considerable attention for the production of hydrogen fuel by using renewable energy resources.However,the sluggish reaction kinetics make it essential to explore precious-metal-free electrocatalysts with superior activity and long-term stability.Tremendous efforts have been made in exploring electrocatalysts to reduce the energy barriers and improve catalytic efficiency.This review summarizes different categories of precious-metal-free electrocatalysts developed in the past 5 years for alkaline water splitting.The design strategies for optimizing the electronic and geometric structures of electrocatalysts with enhanced catalytic performance are discussed,including composition modulation,defect engineering,and structural engineering.Particularly,the advancement of operando/in situ characterization techniques toward the understanding of structural evolution,reaction intermediates,and active sites during the water splitting process are summarized.Finally,current challenges and future perspectives toward achieving efficient catalyst systems for industrial applications are proposed.This review will provide insights and strategies to the design of precious-metalfree electrocatalysts and inspire future research in alkaline water splitting.
基金financially supported by the National Key R&D Program of China (2021YFA1502800)the National Natural Science Foundation of China (21825203,22288201,and 91945302)+1 种基金the Photon Science Center for Carbon Neutrality,Liao Ning Revitalization Talents Program (XLYC1902117)the Youth Innovation Fund of Dalian institute of Chemical Physics (DICP I202125)。
文摘In-depth understanding of the electrolyte-dependent intercalation chemistry in batteries through direct operando/in situ characterizations is crucial for the development of the high-performance batteries.Herein,taking the Al/graphite battery as a model system,the effect of electrolyte coordination structure on the intercalation processes has been investigated over the batteries with either 1-hexyl-3-methylimidazolium chloride(HMICl)-AlCl_(3) or 1-ethyl-3-methylimidazolium chloride(EMICl)-AlCl_(3) ionic liquid electrolyte using operando X-ray photoelectron spectroscopy(XPS)and X-ray diffraction.With a weaker anion-cation interaction in HMI-based electrolyte,the XPS-derived atomic ratio between cointercalated N and intercalated Al is 0.9,which is lower than 1.6 for EMI-based electrolyte.Attributed to the additional de-solvation process,the batteries with the HMI-based electrolyte show a lower ionic diffusion rate,capacity,and cycling performance,which agree with the operando characterization results.Our findings highlight the critical role of the electrolyte coordination structure on the(co-)intercalation chemistry.
基金fellowship funding supported by the Alexander von Humboldt Foundationfinancial funding support from the Natural Science Foundation of Jiangsu Province(BK.20210636)Natural Science Foundation of China(21773294 and 21972164)。
文摘Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.
基金BASF SE(Germany)for their fundingfunding from the German Federal Ministry of Education and Research(BMBF)within the projects ExZellTUMⅡ(grant number 03XP0081)and ExZellTUMⅢ(grant number 03XP0255)and of BMW AG。
文摘Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery cells.Online electrochemical mass spectrometry(OEMS)is an operando gas analysis method that continuously samples the headspace of a custom battery cell.Real-time gas analysis by quantitative OEMS was used to create mechanistic understanding of battery degradation reactions,some of which will be highlight in this article.
基金supported in full by the Joint Center for Energy Storage Researchan Energy Innovation Hub funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences.
文摘The correlation of electrochemical measurements with materials characterization has advanced our understanding of operation and degradation mechanisms in electrochemical energy storage and many other fields.Yet,often these correlations are qualitative,preventing the unambiguous identification of both operational principles and the root causes of performance losses.Here we suggest quantitative approaches to define competing mechanisms and determine their relative contributions.We illustrate the importance of quantitative methodologies over a range of electrochemical systems and highlight the need to consider the effect of the experimental design and measurement itself.These approaches will reveal the most detrimental degradation mechanisms and enable the development of strategies to suppress,stabilize or eliminate them,leading to materials and devices with longer lifetimes,reduced environmental impact,and improved performance.
文摘Since the 1980s,single-crystal Pt electrodes with well-defined surface structures have been deemed stable under mild electrochemical conditions(e.g.,in the potential region of electric double layers,underpotential deposition of hydrogen,or mild hydrogen evolution/OH adsorption)and have served as model electrodes for unraveling the structure-performance relation in electrocatalysis.With the advancement of in situ electrochemical microscopy/spectroscopy techniques,subtle surface restructuring under mild electrochemical conditions has been achieved in the last decade.Surface restructuring can considerably modify electrocatalytic properties by generating/destroying highly active sites,thereby interfering with the deduction of the structure-performance relation.In this review,we summarize recent progress in the restructuring of well-defined Pt(-based)electrode surfaces under mild electrochemical conditions.The importance of the meticulous structural characterization of Pt electrodes before,during,and after electrochemical measurements is demonstrated using CO adsorption/oxidation,hydrogen adsorption/evolution,and oxygen reduction as examples.The implications of present findings for correctly identifying the reaction mechanisms and kinetics of other electrocatalytic systems are also briefly discussed.
基金supported by the National Natural Science Foundation of China (Nos.22272136, 22202041, 22102135, 22202163,22172129)the Fundamental Research Funds for the Central Universities (No.20720220119)+3 种基金Science and Technology Project of Fujian Province (No.2022L3077)the financial support from Guangdong Basic and Applied Basic Research Fund (No.2022A1515110239)the funds from Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)(No.HRTP-[2022]-3)the Fundamental Research Funds for the Central Universities (No.20720220008)。
文摘Supported Pd based catalysts are considered as the efficient candidates for low-carbon alkane oxidation for their outstanding capability to break C-H bond. Whereas, the irreversible deactivation of Pd based catalysts was still frequently observed. Herein, we reinforced the extruded Pd nanoparticles with quantitive Pt to assemble the evenly distributed Pd Pt nanoalloy onto ferrite perovskite(Pd Pt-LCF) matrix with strengthened robustness of metal/oxide support interface. We further co-achieved the enhanced performance, anti-overoxidation as well as resistance of vapor-poisoning in durability measurement. The operando X-ray photoelectron spectroscopy(O-XPS) combined with various morphology characterizations confirms that the accumulation of surface deep-oxidation species of Pd^(4+) is the culprit for fast activity loss in exsolved Pd system, especially at high temperature of 400 ℃. Conversely, it could be completely suppressed by in-situ alloying Pd with equal amount of Pt, which helps maintain the metastable Pd^(2+)/Pd shell and metallic solid-solution core structure. The density function theory(DFT) calculations further buttress that the dissociation of C–H was facilitated on alloy/perovskite interface which is, on the contrary, resistant toward O–H bond cleavage, as compared to Pd/perovskite. Our work suggests that the modification of exsolved metal/oxide catalytic interface could further enrich the toolkit of heterogeneous catalyst design.
基金supported by the National Natural Science Foundation of China(51762014,52231007,12327804,T2321003,22088101)in part by the National Key Research Program of China under Grant 2021YFA1200600.
文摘Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.
基金the financial support of the Beijing National Laboratory for Condensed Matter Physics,21C Innovation Laboratory,Contemporary Amperex Technology Ltd.through project No.21C-OP-202212the Foundation of Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University+1 种基金the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2022-K15),China University of Mining&Technology(Beijing)the National Natural Science Foundation of China(Nos.51672029,51372271).
文摘Rechargeable all-solid-state batteries(ASSBs)are considered to be the next generation of devices for electrochemical energy storage.The development of solid-state electrolytes(SSEs)is one of the most crucial subjects in the field of energy storage chemistry.The newly emerging halide SSEs have recently been intensively studied for application in ASSBs due to their favorable combination of high ionic conductivity,exceptional chemical and electrochemical stability,and superior mechanical deformability.In this review,a critical overview of the development,synthesis,chemical stability and remaining challenges of halide SSEs is given.The design strategies for optimizing the ionic conductivity of halide SSEs,such as element substitution and crystal structure design,are summarized in detail.Moreover,the associated chemical stability issues in terms of solvent compatibility,humid air stability and corresponding degradation mechanisms are discussed.In particular,advanced in situ/operando characterization techniques applied to halide-based ASSBs are highlighted.In addition,a comprehensive understanding of the interface issues,cost issues,and scalable processing challenges faced by halide-based ASSBs for practical application is provided.Finally,future perspectives on how to design high-performance electrode/electrolyte materials are given,which are instructive for guiding the development of halide-based ASSBs for energy conversion and storage.
基金supported by National Key R&D Program of China(2020YFA0406203)National Natural Science Foundation of China(Nos.52072008 and U2032167)+1 种基金Shenzhen Fundamental Research Program(No.GXWD 20201231165807007-20200807125314001)Guangdong Basic and Applied Basic Research Foundation(No.2022B1515120070).
文摘As a unique microprobe for structure and dynamics of materials,neutron possesses superior ability in penetration as well as sensitivity for light and magnetic elements in comparison with X-ray and electron.As for the research and development of lithium-ion batteries(LIBs),neutron diffraction techniques play an indispensable role in exploring the structural properties of various electrode materials,especially the detailed structural evolution of cathode and anode materials during electrochemical cycling.Moreover,based on thorough analysis of neutron diffraction results,an in-depth and systematic understanding of some fundamental mechanisms,such as the formation mechanism of defects and migration mechanism of lithium ions,could also be established,which is essential for the development of high-performance electrode materials for the next-generation LIBs.Nevertheless,that technique would not seem to be widely applied yet in comparison with the application of X-ray diffraction and more attention should be paid.To demonstrate the advantages of neutron diffraction technique in research of LIBs materials,this work systematically summarizes representative neutron diffraction studies on exploring structural details hidden in electrode materials and on probing structural evolution of electrode materials during charge/discharge processes.Prospects for further applications of neutron diffraction techniques in research of LIBs are also put forward.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52122308,51973200,52202050)the China Postdoctoral Science Foundation(2022TQ0286).
文摘The electrochemical oxygen reduction reaction(ORR)is pivotal in energy conversion via a 4e-ORR pathway and green hydrogen peroxide production via 2e-ORR pathway.Transition metal single atom catalysts(TM SACs)have attracted intense attention in recent years for ORR due to their high activity and near maximum metal atom utilization.The future development of TM SACs for ORR requires improved understanding of reaction pathways,since currently the true origin of activity remains contentious owing to the lack of qualitative/quantitative information about active sites.Knowledge-guided design is imperative for the optimization of TM SACs performance in terms of activity and selectivity.This review focuses on the latest progress in the design of TM SACs for ORR,placing particular attention on efforts to elucidate reaction mechanisms.Experimental evidence based on in-situ/operando characterization measurements,along with theoretical predictions,are summarized to deepen understanding of the structure-performance relationships at both atomic and molecular level.Finally,some perspectives are offered relating to the fundamental science needed for TM SACs to find practical application in energy storage and conversion devices.We hope this review will inspire the development of new synthetic routes towards high-performance ORR electrocatalysts for the energy sector.
基金Acknowledgements The authors would like to thank the National Natural Science Foundation of China(21975292,21978331,21905311,92061124)the Guangzhou Science and Technology Project(201707010079)+2 种基金the Guangdong Province Nature Science Foundation(2020A1515010343)the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(No.2016TQ03N322)the Fundamental Research Funds for Central Universities(No19lgpy136,19lgpy116)for financial support.Prof.Tongwen Yu would like to give special thanks to the support of the startup grant provided by the“Hundred Talents Program”at Sun Yatsen University(No.76110-18841219).
文摘The electrochemical oxygen evolution reaction(OER)plays an important role in many clean electrochemical energy storage and conversion systems,such as electrochemical water splitting,rechargeable metal–air batteries,and electrochemical CO_(2) reduction.However,the OER involves a complex four-electron process and suffers from intrinsically sluggish kinetics,which greatly impairs the efficiency of electrochemical systems.In addition,state-of-the-art RuO2-based OER electrocatalysts are too expensive and scarce for practical applications.The development of highly active,cost-effective,and durable electrocatalysts that can improve OER performance(activity and durability)is of significant importance in realizing the widespread application of these advanced technologies.To date,considerable progress has been made in the development of alternative,noble metal-free OER electrocatalysts.Among these alternative catalysts,transition metal compounds have received particular attention and have shown activities comparable to or even higher than those of their precious metal counterparts.In contrast to many other electrocatalysts,such as carbon-based materials,transition metal compounds often exhibit a surface reconstruction phenomenon that is accompanied by the transformation of valence states during electrochemical OER processes.This surface reconstruction results in changes to the true active sites and an improvement or reduction in OER catalytic performance.Therefore,understanding the self-reconstruction process and precisely identifying the true active sites on electrocatalyst surfaces will help us to finely tune the properties and activities of OER catalysts.This review provides a comprehensive summary of recent progress made in understanding the surface reconstruction phenomena of various transition metal-based OER electrocatalysts,focusing on uncovering the correlations among structure,surface reconstruction and intrinsic activity.Recent advances in OER electrocatalysts that exhibit a surface self-reconstruction capability are also discussed.We identify possible challenges and perspectives for the development of OER electrocatalysts based on surface reconstruction.We hope this review will provide readers with some guidance on the rational design of catalysts for various electrochemical reactions.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.11975234,11775225,12075243,and 12005227)the Users with Excellence Program of Hefei Science Center CAS(Nos.2021HSC-UE002,2020HSCUE002,and 2019HSC-UE002)+5 种基金the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(No.2020HSC-CIP013)the Postdoctoral Science Foundation of China(Nos.2019M662202,2020M682041,and 2020TQ0316)the Fundamental Research Funds for the Central Universities(No.WK2310000103)The support from the Ministry of Science and Technology of China(No.2017YFA0204904)is gratefully acknowledgedThe numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of ChinaThis work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
文摘The breaking of nonpolar N≡N bond of dinitrogen is the biggest dilemma for electrocatalytic nitrogen reduction reaction(NRR)application,driving electron migration between catalysts and N≡N bond(termed“πback-donation”process)is crucial for attenuating interfacial energy barrier but still remains challenging.Herein,using density functional theory calculations,we revealed that constructing a unique hetero-dicationic Mo^(4+)-Mo^(6+)pair could effectively activate N≡N bond with a lying-down chemisorption configuration by an asymmetrical“πback-donation”process.As a proof-of-concept demonstration,we synthesized MoO_(2)@MoO_(3)heterostructure with double Mo sites(Mo^(4+)-Mo^(6+)),which are embedded in graphite,for electrochemical nitrogen reduction.Impressively,this hetero-dicationic Mo^(4+)-Mo^(6+)pair catalysts display more excellent catalytic performance with a high NH_(3)yield(60.9μg·h^(-1)·mg^(-1))and Faradic efficiency(23.8%)as NRR catalysts under ambient conditions than pristine MoO_(2)and MoO_(3).Operando characterizations using synchrotron-based spectroscopic techniques identified the emergence of a key^(*)N_(2)Hy intermediate on Mo sites during NRR,which indicates that the Mo sites are active sites and the NRR process tends to follow an associative mechanism.This novel type of hetero-dicationic catalyst has tremendous potential as a new class of transition metal-based catalysts with promising applications in electrocatalysis and catalysts for energy conversion and storage.
基金financially supported by the National Nature Science Foundation of China(grant no.22279129)the Jilin Province Science and Technology Development Program(grant nos.20230101367JC and 20230201154GX).
文摘Electrocatalytic water splitting,which is recognized as an ideal technology to tackle escalating energy demands and related environmental problems,has attracted growing interest.The sluggish dynamics of the oxygen evolution reaction(OER)has posed an intractable problem in this regard,hindering the practical commercial application of hydrogen production via water splitting.Therefore,the development of active and stable electrocatalysts is a prerequisite for accelerating OER kinetics,which greatly relies on the mechanistic understanding of the structural-property relationship.Owing to the harsh anodic oxidation conditions,most of the catalysts undergo surface reconstruction during the OER process,which means the authentic active sites are the in-situ reconstructed species rather than the freshly prepared one.In this regard,fully comprehending the surface reconstruction process will help us to determine the active sites on the catalyst surface and gain insights into the design principles for more efficient OER catalysts.In this review,we will first give a summary of surface reconstruction of OER electrocatalysts.Then we will focus on the factors that affect surface reconstruction,in-situ/operando characterization technologies,and the strategies to govern surface reconstruction.In addition,we outline existing challenges and the outlook for the development of OER catalysts by tuning surface reconstruction.