期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interactions among Tamarix (Tamaricaceae), Opsius stactogalus (Cicadellidae), and Litter Fungi Limit Riparian Plant Establishment 被引量:1
1
作者 Gibney M. Siemion Lawrence E. Stevens 《Advances in Entomology》 2015年第2期65-81,共17页
One of the most significant plant invasions in the U.S. has been that of the Old World genus Tamarix. While Tamarix spp. is widely studied, surprisingly little is known about more complex trophically-linked community ... One of the most significant plant invasions in the U.S. has been that of the Old World genus Tamarix. While Tamarix spp. is widely studied, surprisingly little is known about more complex trophically-linked community mechanisms influencing under-canopy succession. We investigated multi- trophic interactions among Tamarix spp., nonnative host-specific Opsius stactogalus leafhopper distribution and honeydew production, and the Tamarix spp. canopy floor fungal assemblage. We quantified leafhopper abundance and honeydew throughfall, and tested under-canopy seed viability and seedling mortality across a 1600 m elevation gradient in the lower Colorado River basin in 2007. We conducted field and laboratory experiments in 2007-08 to test the effects of Tamarix spp. litter fungi, synthetic honeydew, and the combination of those variables on germination and seedling survivorship of three common, co-occurring phreatophyte (riparian groundwater-dependent plant) species. Tamarix spp. litter and honeydew treatments reduced understory seed viability and recruitment of two native, woody riparian species (Populus fremontii and Baccharis salicina), as well as Tamarix spp. Four major patterns were detected. 1) Litter fungi alone and synthetic honeydew alone reduced seed viability and seedling survivorship of all three species by two- to four-fold. 2) Synthetic honeydew + litter reduced Tamarix spp. and P. fremontii seed and seedling viability by up to 10-fold. 3) Synthetic honeydew concentration and seedling mortality were positively related among all three plant species. 4) B. salicina was less susceptible to all treatments than Tamarix spp. and P. fremontii. These results indicate that complex interactions among nonnative Tamarix spp., nonnative Opsius leafhopper honeydew production, and soil fungi may influence riparian phreatophyte recruitment and succession. 展开更多
关键词 Herbivore HONEYDEW Invasion Ecology Multi-Trophic Interaction opsius stactogalus RIPARIAN TAMARIX
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部