One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from ...One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from other countries as a reference. Updating road networks through the use of hyperspectral remote sensing images can be a good alternative. However, accurately recognizing and extracting hyperspectral images from roads has been recognized as a challenging task in the processing of hyperspectral data. In order to solve the aforementioned challenges, Hyperion hyperspectral images were combined with the Optimum Forest Path (OPF) algorithm for supervised classification of rural roads and the effectiveness of the OPF and SVM classifiers when applied to these areas was compared. Both classifiers produced reasonable results, however, the OPF algorithm outperformed SVM. The higher classification accuracy obtained by the OPF was mainly attributed to the ability to better distinguish between regions of exposed soil and unpaved roads.展开更多
Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasonin...Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.展开更多
蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的...蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。展开更多
Undoubtedly, pipeline transport is considered as significant economical artery of country and national valuable resources, so it is necessary to use latest technologies, major standards and instructions and the best h...Undoubtedly, pipeline transport is considered as significant economical artery of country and national valuable resources, so it is necessary to use latest technologies, major standards and instructions and the best human resources in designing, operation and supervision in construction and also protection of it. Also, all authorities and involved of construction and operation of gas industries installation should observe safety criteria, health and environment and aware of them ever. In fact, in designing of these programs, in addition to technical and economical points, environmental characteristics should be considered in order to their construction has minimum damage to environment. On the other hand, common and traditional approaches of pipeline routing are based on using costly and time-consuming methods. In these methods, it is not easily to use all effective parameters in determining optimum way. According to capability of analysis of network spatial information systems in incorporation of spatial data, for using all effective parameters in routing, this environment is used, therefore weighted overlay analysis (Boleyn, index and fuzzy) and shortest path are modeled for finding optimum path of pipeline in GIS environment.展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed,...Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed, for example Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated according to probability operation. The objective function is to find the route that has the biggest probability to arrive for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the proposed method is illustrated with a practical example.展开更多
文摘One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from other countries as a reference. Updating road networks through the use of hyperspectral remote sensing images can be a good alternative. However, accurately recognizing and extracting hyperspectral images from roads has been recognized as a challenging task in the processing of hyperspectral data. In order to solve the aforementioned challenges, Hyperion hyperspectral images were combined with the Optimum Forest Path (OPF) algorithm for supervised classification of rural roads and the effectiveness of the OPF and SVM classifiers when applied to these areas was compared. Both classifiers produced reasonable results, however, the OPF algorithm outperformed SVM. The higher classification accuracy obtained by the OPF was mainly attributed to the ability to better distinguish between regions of exposed soil and unpaved roads.
文摘Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.
文摘蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。
文摘Undoubtedly, pipeline transport is considered as significant economical artery of country and national valuable resources, so it is necessary to use latest technologies, major standards and instructions and the best human resources in designing, operation and supervision in construction and also protection of it. Also, all authorities and involved of construction and operation of gas industries installation should observe safety criteria, health and environment and aware of them ever. In fact, in designing of these programs, in addition to technical and economical points, environmental characteristics should be considered in order to their construction has minimum damage to environment. On the other hand, common and traditional approaches of pipeline routing are based on using costly and time-consuming methods. In these methods, it is not easily to use all effective parameters in determining optimum way. According to capability of analysis of network spatial information systems in incorporation of spatial data, for using all effective parameters in routing, this environment is used, therefore weighted overlay analysis (Boleyn, index and fuzzy) and shortest path are modeled for finding optimum path of pipeline in GIS environment.
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.
文摘Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed, for example Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated according to probability operation. The objective function is to find the route that has the biggest probability to arrive for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the proposed method is illustrated with a practical example.