The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high v...The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit.展开更多
Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation r...Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene.展开更多
We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling struct...We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .展开更多
The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency ...The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency with the secondary electron emission coefficient (δ) of the corona electrode as an intermediary: when the impulse voltage power ( W ) was fixed the corona electrode material with higher δ could induce higher decomposition efficiency. In these experiments, wolfram electrode which has the highest δ has really induced the highest decomposition efficiency.展开更多
[ Objective] The study aims to discuss the feasibility of using a fixed biological bed to treat low-concentration organic waste gas. [ Method] A fixed biological bed was used to treat low-concentration organic waste g...[ Objective] The study aims to discuss the feasibility of using a fixed biological bed to treat low-concentration organic waste gas. [ Method] A fixed biological bed was used to treat low-concentration organic waste gas from a phosphate workshop, and then the waste gas treated was assessed by human sense of smell to determine the most economical empty bed contact time, thereby verifying the feasibility of using a fixed biolog- ical bed to treat low-concentration organic waste gas. [Result] When empty bed contact time was 60 s, the smell of the treated waste gas was acceptable, and COD value of recycled water in the fixed biological bed was essentially unchanged. It proved that organic load of the waste gas was consumed by microorganisms within 60 s. [ Conclusion] It is feasible to use a fixed biological bed to treat Iow-concantration organic waste gas from a phosphate workshop.展开更多
The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization...The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.展开更多
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact...The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.展开更多
Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and ...Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.展开更多
Porous flower-like SnO_(2)/CdSnO_(3) microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination,and the sensing performance was measured when a gas senso...Porous flower-like SnO_(2)/CdSnO_(3) microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination,and the sensing performance was measured when a gas sensor,based on such microstructures,was exposed to various volatile organic compound(VOC)gases.The response value was found to reach as high as 100.1 when the SnO_(2)/CdSnO_(3) sensor was used to detect 100 ppm formaldehyde gas,much larger than those of other tested VOC gases,indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas.Meanwhile,the response/recovery process was fast with the response time and recovery time of only 13 and 21 s,respectively.The excellent gas sensing performance derive from the advantages of SnO_(2)/CdSnO_(3),such as abundant n-n heterojunctions built at the interface,high available specific surface area,abundant porosity,large pore size,and rich reactive oxygen species,as well as joint effects arising from SnO_(2) and CdSnO_(3),suggesting that such porous flower-like SnO_(2)/CdSnO_(3) microstructures composed of nanosheets have a high potential for developing gas sensors.展开更多
A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate f...A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate formation in flow channels,varying amount of crude oil in water emulsion without any other extraneous additives has undergone methane gas hydrate formation in an autoclave cell.Crude oil was able to thermodynamically inhibit the gas hydrate formation as observed from its hydrate stability zone.The normalized rate of hydrate formation in the emulsion has been calculated from an illustrative chemical affinity model,which showed a decrease in the methane consumption(decreased normalized rate constant) with an increase in the oil content in the emulsion.Fourier transform infrared spectroscopy(FTIR) of the emulsion and characteristic properties of the crude oil have been used to find the chemical component that could be pivotal in selfinhibitory characteristic of the crude oil collected from Ankleshwar,India,against a situation of clogged flow due to formation of gas hydrate and establish flow assurance.展开更多
Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the fie...Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.展开更多
Solvothermal reaction of 3-aminoisonicotinic acid(Haina) and Cu(NO_3)_2·2.5H_2O gave a novel twodimensional(2D) microporous metal–organic framework, [Cu(aina)_2(DMF)]·DMF(1, DMF = N,N-dimethylfor...Solvothermal reaction of 3-aminoisonicotinic acid(Haina) and Cu(NO_3)_2·2.5H_2O gave a novel twodimensional(2D) microporous metal–organic framework, [Cu(aina)_2(DMF)]·DMF(1, DMF = N,N-dimethylformamide). Single-crystal X-ray crystallographic study of compound 1 revealed that Cu(II)ions are linked by ainaàligands forming square grid-like layers, which stack together via multiple hydrogen bonding interactions. The solvent-free framework of 1a displayed considerable porosity(void = 46.5%) with one-dimensional(1D) open channels(4.7 ? ? 4.8 ?) functionalized by amino groups.Gas sorption measurements of 1 revealed selective carbon dioxide(CO_2) and acetylene(C_2H_2) adsorption over methane(CH_4) and nitrogen(N_2) at ambient temperature.展开更多
基金supported by the National Natural Science Foundation of China(Nos.49773195 and 49502029)the Visiting Scholar Foundation of Labs in Universities,Research Foundation of the State Key Laboratory of Metallogenesis in Nanjing University+1 种基金Research Foundation of Youth Teachers of National Educational Department and the Training Program of Medium-youth Teachers supported by the Lingnan Foundationsupported by the“Trans-century Training Programme Foundation for the Talents”by the Ministry of Education.
文摘The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hostedprecious metal deposit. Most of the previous researchers believed that the deposit was formed bymeteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, ninelight hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from theChangkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C_(1-4) and unsaturatedalkenes C_(2-4) and aromatic hydrocarbons, in which the alkanes are predominant, while the contentsof alkenes and aromatic hydrocarbons are very low. The sum alka/sum alke ratio of most samples ishigher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens insedimentary rocks caused by water-rock interactions at medium-low temperatures, and themetallogenic processes might have not been affected by magmatic activity. A thermodynamiccalculation shows that the light hydrocarbons have reached chemical equilibrium at temperatureshigher than 200 deg C, and they may have been generated in the deep part of sedimentary basins(e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of thebasin via a long distance. Most of the organic gases are generated by pyrolysis of the type IIkerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. Thecompositions and various parameters of light hydrocarbons in gold ores are quite similar to those insilver ores, suggesting that the gold and silver ores may have similar metallogenic processes.Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkengdeposit may be of a tectonic setting of continental rift. The results of this study support fromone aspect the authors' opinion that the Changkeng deposit is not formed by meteoric waterconvection, and that its genesis has a close relationship with the evolution of the Sanzhou basin,so it belongs to the sedimentary hot brine transformed deposit.
基金Supported by Guigang City Science Research and Technology Development Plan Project(GUIKEJI2203014).
文摘Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene.
文摘We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .
文摘The technique of organic exhaust gas decomposition with impulse corono dischrge plasma has been investigated in this study. It has been discovered that the impulse electric field affected the decomposition efficiency with the secondary electron emission coefficient (δ) of the corona electrode as an intermediary: when the impulse voltage power ( W ) was fixed the corona electrode material with higher δ could induce higher decomposition efficiency. In these experiments, wolfram electrode which has the highest δ has really induced the highest decomposition efficiency.
文摘[ Objective] The study aims to discuss the feasibility of using a fixed biological bed to treat low-concentration organic waste gas. [ Method] A fixed biological bed was used to treat low-concentration organic waste gas from a phosphate workshop, and then the waste gas treated was assessed by human sense of smell to determine the most economical empty bed contact time, thereby verifying the feasibility of using a fixed biolog- ical bed to treat low-concentration organic waste gas. [Result] When empty bed contact time was 60 s, the smell of the treated waste gas was acceptable, and COD value of recycled water in the fixed biological bed was essentially unchanged. It proved that organic load of the waste gas was consumed by microorganisms within 60 s. [ Conclusion] It is feasible to use a fixed biological bed to treat Iow-concantration organic waste gas from a phosphate workshop.
基金funded by the National Natural Science Foundation of China (Grant No. 41222035)
文摘The authors propose a new "three-layer" conceptual model for the air-sea exchange of organic gases, which includes a dynamic surface microlayer with photochemical and biological processes. A parameterization of this three-layer model is presented, which was used to calculate the air-sea fluxes of acetone over the Pacific Ocean. The air-sea fluxes of acetone calculated by the three-layer model are in the same direction but possess half the magnitude of the fluxes calculated by the traditional two-layer model in the absence of photochemical and biological processes. However, photochemical and biological processes impacting acetone in the microlayer can greatly vary the calculated fluxes in the three-layer model, even reversing their direction under favorable conditions. Our model may help explain the discrepancies between measured and calculated acetone fluxes in previous studies. More measurements are needed to validate our conceptual model and provide constraints on the model parameters.
基金The National Key Science and Technology Special Project(13th Five Year Plan)of the Key Technology of Gas and Oil Exploration in Offshore Deep Water Area(Phase 3)under contract No.2016Zx05026
文摘The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.
文摘Reliable estimation of the pore size distribution(PSD) in porous materials such as metal–organic frameworks(MOFs) and zeolitic imidazolate frameworks(ZIFs) is crucial for accurately assessing adsorption capacity and corresponding selectivity. In this study, the so-called zeolitic imidazolate framework-7(ZIF-7) is successfully synthesized via relatively fast and convenient microwave technique. The morphology and structure of the obtained MOF were characterized by XRD, SEM and N_2 and CO_2adsorption/desorption isotherms at 77 K and0 °C respectively. Then, to determine the PSD of the fabricated MOF, carbon dioxide isotherms are experimentally measured at various temperatures up to atmospheric pressure. Afterward, the experimental CO_2 isotherms data are utilized in two recently proposed in-house algorithms of SHN1 and SHN2 to extract the true PSD of manufactured ZIF-7. The obtained results revealed that median pore diameter of the fabricated ZIF-7 is estimated around 0.404 nm and 0.370 nm by using CO_2 isotherms at 273 K and 298 K respectively. These values are in good agreement with the real pore diameter of 0.42 nm. Moreover, experimental data of water adsorption isotherms over four different MOFs, borrowed from literature, are employed to illustrate further effectiveness of the above algorithms on successful determination of the corresponding pore size distributions. All predicted PSDs are proved to be in good agreement with those obtained from independent methods such as topology and morphology studies.
基金financially supported by the National Research Foundation of Korea NRF-2019R1A5A8080290the National Natural Science Foundation of China(Grant No.52171148)the Natural Science Foundation of Anhui Province(Grant No.2008085J23).
文摘Porous flower-like SnO_(2)/CdSnO_(3) microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination,and the sensing performance was measured when a gas sensor,based on such microstructures,was exposed to various volatile organic compound(VOC)gases.The response value was found to reach as high as 100.1 when the SnO_(2)/CdSnO_(3) sensor was used to detect 100 ppm formaldehyde gas,much larger than those of other tested VOC gases,indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas.Meanwhile,the response/recovery process was fast with the response time and recovery time of only 13 and 21 s,respectively.The excellent gas sensing performance derive from the advantages of SnO_(2)/CdSnO_(3),such as abundant n-n heterojunctions built at the interface,high available specific surface area,abundant porosity,large pore size,and rich reactive oxygen species,as well as joint effects arising from SnO_(2) and CdSnO_(3),suggesting that such porous flower-like SnO_(2)/CdSnO_(3) microstructures composed of nanosheets have a high potential for developing gas sensors.
基金the financial assistance provided by University Grants Commission, New Delhi, India, under Special Assistance Program (SAP) to the Department of Petroleum Engineering, Indian School of Mines, Dhanbad, India
文摘A low-viscosity emulsion of crude oil in water can be believed to be the bulk of a flow regime in a pipeline.To differentiate which crude oil would and which would not counter the blockage of flow due to gas hydrate formation in flow channels,varying amount of crude oil in water emulsion without any other extraneous additives has undergone methane gas hydrate formation in an autoclave cell.Crude oil was able to thermodynamically inhibit the gas hydrate formation as observed from its hydrate stability zone.The normalized rate of hydrate formation in the emulsion has been calculated from an illustrative chemical affinity model,which showed a decrease in the methane consumption(decreased normalized rate constant) with an increase in the oil content in the emulsion.Fourier transform infrared spectroscopy(FTIR) of the emulsion and characteristic properties of the crude oil have been used to find the chemical component that could be pivotal in selfinhibitory characteristic of the crude oil collected from Ankleshwar,India,against a situation of clogged flow due to formation of gas hydrate and establish flow assurance.
文摘Molecular speciation of atmospheric organic matter was investigated during a short summer field campaign performed in a citrus fruit field in northern Corsica(June 2011). Aimedat assessing the performance on the field of newly developed analytical protocols, this work focuses on the molecular composition of both gas and particulate phases and provides an insight into partitioning behavior of the semi-volatile oxygenated fraction. Limonene ozonolysis tracers were specifically searched for, according to gas chromatography–mass spectrometry(GC–MS) data previously recorded for smog chamber experiments. A screening of other oxygenated species present in the field atmosphere was also performed. About sixty polar molecules were positively or tentatively identified in gas and/or particle phases. These molecules comprise a wide range of branched and linear, mono and di-carbonyls(C_3–C7),mono and di-carboxylic acids(C_3–C_18), and compounds bearing up to three functionalities.Among these compounds, some can be specifically attributed to limonene oxidation and others can be related to α- or β-pinene oxidation. This provides an original snapshot of the organic matter composition at a Mediterranean site in summer. Furthermore, for compounds identified and quantified in both gaseous and particulate phases, an experimental gas/particle partitioning coefficient was determined. Several volatile products, which are not expected in the particulate phase assuming thermodynamic equilibrium, were nonetheless present in significant concentrations. Hypotheses are proposed to explain these observations, such as the possible aerosol viscosity that could hinder the theoretical equilibrium to be rapidly reached.
基金supported by the grant AX-1593(JCGZ)and AX1730(BC)from the Welch Foundation
文摘Solvothermal reaction of 3-aminoisonicotinic acid(Haina) and Cu(NO_3)_2·2.5H_2O gave a novel twodimensional(2D) microporous metal–organic framework, [Cu(aina)_2(DMF)]·DMF(1, DMF = N,N-dimethylformamide). Single-crystal X-ray crystallographic study of compound 1 revealed that Cu(II)ions are linked by ainaàligands forming square grid-like layers, which stack together via multiple hydrogen bonding interactions. The solvent-free framework of 1a displayed considerable porosity(void = 46.5%) with one-dimensional(1D) open channels(4.7 ? ? 4.8 ?) functionalized by amino groups.Gas sorption measurements of 1 revealed selective carbon dioxide(CO_2) and acetylene(C_2H_2) adsorption over methane(CH_4) and nitrogen(N_2) at ambient temperature.