Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ar...Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ardent pursuing on the synthetic approaches of hollow materials.Herein,an intriguing route,combining solid precursor transition and Ostwald ripening(SPTOR),is developed to craft nano single-crystal(SC)-constructed MnCO_(3) submicron hollow spindles homogeneously encapsulated in a reduced graphene oxide matrix(MnCO_(3) SMHSs/rGO).It is noteworthy that the H-bonding interaction between Mn_(3)O_(4) nanoparticles(NPs)and oxygen-containing groups on GO promotes uniform anchoring of Mn_(3)O_(4) NPs on GO,mild reductant ascorbic acid triggers the progressive solid-to-solid transition from Mn_(3)O_(4) NPs to MnCO_(3) submicron solid spindles(SMSSs)in situ on GO,and the Ostwald ripening process induces the gradual dissolution of interior polycrystals of MnCO_(3) SMSSs and subsequent recrystallization on surface SCs of MnCO_(3) SMHSs.Remarkably,MnCO_(3) SMHSs/rGO delivers a 500th lithium storage capacity of 2023 mAh g^(-1) at 1000 mAg^(-1),which is 10 times higher than that of MnCO_(3) microspheres/rGO fabricated from a conventional Mn^(2+)salt precursor(202 mAh g^(-1)).The ultrahigh capacity and ultralong lifespan of MnCO_(3) SMHSs/rGO can be primarily attributed to the superior reaction kinetics and reversibility combined with exceptional interfacial and capacitive lithium storage capability,enabled by the fast ion/electron transfer,large specific surface area,and robust electrode pulverization inhibition efficacy.Moreover,fascinating in-depth lithium storage reactions of MnCO_(3) are observed such as the oxidation of Mn^(2+)in MnCO_(3) to Mn^(3+)in charge process after long-term cycles and the further lithiation of Li_(2)CO_(3) in discharge process.As such,the Carbon Energy.SPTOR approach may represent a viable strategy for crafting various hollow functional materials with metastable nanomaterials as precursors.展开更多
The relation between the critical radius and the particle size distribution for generalized Ostwald type ripening processes whereby the mass transfer coefficient is modelled by a power law was derived. The critical ra...The relation between the critical radius and the particle size distribution for generalized Ostwald type ripening processes whereby the mass transfer coefficient is modelled by a power law was derived. The critical radius is determined by the growth rate, the mass transfer coefficient and the mass balance, and is independent of whether the limiting stationary growth regime has been obtained.展开更多
Reconstruction of supported nanocatalysts often occurs in gas-solid reactions and significantly affects the catalytic performance,yet it is much less explored in liquid-phase environment.Herein,we find that highly-dis...Reconstruction of supported nanocatalysts often occurs in gas-solid reactions and significantly affects the catalytic performance,yet it is much less explored in liquid-phase environment.Herein,we find that highly-dispersed Ag nanocatalysts,i.e.,AgOx clusters,supported on alumina,silica,and titania,can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature.The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles.The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles.This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts,which should be carefully considered in liquid-solid interface catalytic reactions such as electrocatalysis,environmental catalysis,and organic synthesis in liquid phase.展开更多
Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and cha...Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and challenging.Herein,we reveal a general strategy for fabricating hollow binary oxides heterostructures(Co_(3)O_(4)-δ-MnO_(2)and Co_(3)O_(4)–SnO_(2))utilizing Ostwald ripening.Hollow Co_(3)O_(4)-δ-MnO_(2)nano-network with the structure evolution process was systematically explored through experimental and theoretical tools,identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth.In addition,the structural evolution,from hollow Co_(3)O_(4)-δ-MnO_(2)to Co_(3)O_(4)-α-MnO_(2),can be observed when the time of secondary hydrothermal reaches 96 h due to the topotactic layer-to-tunnel transition process.Notably,optimized Co_(3)O_(4)-δ-MnO_(2)-48 exhibits a superior PEC degradation efficiency of 96.42%and excellent durability(20,000 min)under harsh acid conditions,attributed to the massive hollow structures'vast surface area for high intently active species.Furthermore,density functional theory simulations elucidated the Co_(3)O_(4)-δ-MnO_(2)’electron-deficient surface and high d-band center(Co_(3)O_(4)-δ-MnO_(2),-1.06;Co_(3)O_(4)-α-MnO_(2),-1.49),strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species ofO_(2)and 1 O_(2).This work not only demonstrates superior PEC degradation efficiency of hollow Co_(3)O_(4)-δ-MnO_(2)for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.展开更多
Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this stu...Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this study,a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process.Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening.A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability.At 10 mA·cm^−2,a Ni2P cell voltage of 1.63 V was obtained,which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell.The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.展开更多
A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the ...A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the volume ratio of isopropanol (IPA) to acetylacetone (Acac) in the solvothermal process. During the formation process of HM, precipitation of solid cores, subsequent deposition of outer shells on the surface of cores, and simultaneous core dissolution and shell recrystallizafion are observed, which validate the inside-out Ostwald ripening mechanism. Design and optimization of the properties (pore size, surface area, and trap state) of TiO2 microspheres are vital to the high performance of dye- sensitized solar cells (DSSCs). The optimized TiO2 rnicrospheres (rHM and rSM) obtained by post-processing on recrystallization, possess large pore sizes, high surface areas and reduced trap states (Ti3~ and oxygen vacancy), and are thus ideal materials for photovoltaic devices. The power conversion efficiency of DSSCs fabricated using rHM photoanode is 11.22%, which is significantly improved compared with the 10.54% efficiency of the rSM-based DSSC. Our work provides a strategy for synthesizing TiO2 microspheres that simultaneously accommodate different physical properties, in terms of surface area, crystallinity, morphology, and mesoporosity.展开更多
An Ostwald ripening-based route is proposed to prepare Ni-rich layered cathodes with Co-rich surface for li- thium-ion batteries (LIBs). Commercially available Nio.aCo0.1 Mn0.8(OH)2 and spray pyrolysis derived por...An Ostwald ripening-based route is proposed to prepare Ni-rich layered cathodes with Co-rich surface for li- thium-ion batteries (LIBs). Commercially available Nio.aCo0.1 Mn0.8(OH)2 and spray pyrolysis derived porous Co304 are used as mixed precursors. During the lithiation reaction process under high-temperature, the porous Co304 microspheres scatter primary particles and spontaneously redeposit on the surface of Ni-rich spheres according to Ostwald ripening mechanism, forming the Ni-rich materials with Co-rich outer layers. When evaluated as cathode for LIBs, the resultant material shows ability to inhibit the cation disorder, relieves the phase transition from H2 to H3 and diminishes side re- actions between the electrolyte and Ni-rich cathode material. As a result, the obtained material with Co-rich outer layers exhibits much more improved cycle and rate performance than the material without Co-rich outer layers. Particularly, NCM-Co-1 (molar ratio of Nio.sCo0.1Mn0.1(OH)2/Co3Oa is 60:1) delivers a reversible capacity of 159.2 mA h g-1 with 90.5% capacity retention after 200 cycles at 1 C. This strategy pro- rides a general and efficient way to produce gradient sub- stances and to address the surface problems of Ni-rich cathode materials.展开更多
The Ostwald ripening of carbide particles occurs during the process of subcritical annealing in SCM435 steel, and the degree of ripening influences the microstructure and mechanical properties of the steel. The effect...The Ostwald ripening of carbide particles occurs during the process of subcritical annealing in SCM435 steel, and the degree of ripening influences the microstructure and mechanical properties of the steel. The effects of Ostwald ripening were studied by simulating different soaking time at 680 ~C using SCM435 steel. The spheroidized specimens were analysed by conducting microstructure and mechanical tests. After increasing the soaking time from 2 to 6 h at 680 ~C during subcritical annealing, the number of carbide particles and the spheroidization ratio increased gradually, and the formability was improved. When the soaking time ranged from 6 to 8 h, the spheroidization ratio was similar; however, the number of carbide particles decreased, and the formability gradually worsened. Therefore, by comprehensively comparing the microstructures and mechanical properties, the optimum soaking time was determined to be 6 h at 680 ~C during subcritical annealing to obtain preferable cold heading. In addition, the carbide particles gradually coarsened when the soaking time was extended from 2 to 8 h. A formula was presented to quantitatively characterize the progress of Ostwald ripening of the carbide particles during the subcritical annealing of SCM435 steel, and the relative error was less than 8.02%.展开更多
Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of S...Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of SMBs.Understanding Na deposition mechanisms,particularly the early stage of Na deposition kinetics,is critical to enable the SMBs.In this context,we conducted in situ observations of the early stage of electrochemical Na deposition.We revealed an important electrochemical Ostwald ripening(EOR)phenomenon which dictated the early stage of Na deposition.Namely,small Na nanocrystals were nucleated randomly,which then grew.During growth,smaller Na nanocrystals were contained by bigger ones via EOR.We observed two types of EOR with one involving only electrochemical reaction driven by electrochemical potential difference between bigger and smaller nanocrystals;while the other being dominated by mass transport governed by surface energy minimization.The results provide new understanding to the Na deposition mechanism,which may be useful for the development of SMB for energy storage applications.展开更多
In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing ...In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing growth of carbide proceeds in such a way that the bigger carbide particles swallow the smaller ones,and the short rhabdoid carbides dissolve and are spheroidized by itself.When the samples were held at 720℃ for more than 3 h,the spheroidization is not obvious.The feature of the process is the size increment and the amount decrement of carbide particles.The empirical equation for growth rate of carbides was obtained.The volume fraction of carbides keeps constant.The growth process agrees well with Ostwald Ripening Law.展开更多
The effects of tempering holding time at 700℃on the morphology,mechanical properties,and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy a...The effects of tempering holding time at 700℃on the morphology,mechanical properties,and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy.The equilibrium solid solution amounts of Mo,Ti,and C in ferritic steel at various temperatures were calculated,and changes in the sizes of nanoparticles over time at different Mo contents were analyzed.The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite(MNF)steel changed the least during aging.High Mo contents inhibited the maturation and growth of nanoparticles,but no obvious inhibitory effect was observed when the Mo content exceeded 0.37wt%.The tensile strength and yield strength continuously decreased with the tempering time.Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening(the difference range was 30-40 MPa)and precipitation strengthening(the difference range was 78-127 MPa).MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability,whereas low Mo content nano-ferrite(LNF)steel and high Mo content nano-ferrite(HNF)steel displayed relatively similar thermodynamic stabilities.展开更多
The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18 wt%Cr...The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18 wt%Cr-8 wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-pointphase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy(CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.展开更多
In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (S...In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.展开更多
The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism...The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism was discussed. With the reaction beginning and continuing, amorphous Ni(OH)2 nano-crystallites grow up to spherical micron-particles with radially arranged crystallites. The nucleation, crystallization and re-crystallization led by Ostwald ripening simultaneously take place through the whole growth processes. With the course from reversible aggregation to irreversible agglomeration, the Ni(OH)2 particles tend to grow according to the template growth model: the growth on the crystallite templates stretching in the radius directions is free and quick, while the growth rate for crystallites in other directions is confined due to lower monomers concentration and tends to dissolve So it is only the radially arranged crystallites that predominate in the particle and lead to characteristic microstructures.展开更多
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glyco...The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.展开更多
In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection ...In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection and the mean size of the particles is changed significantly during the experiments.A simple model has been set up which takes the influence of the convection into account.The resulting growth law has been simplified for diffusion and convection dominated growth.The growth law was verified with shear experiments in a Searl-rheometer with A356 and tin-lead alloys.The experiments demonstrated that under convection the growth follows a linear time law and that the rate constant depends on the root of the shear rate.The correction of experimental results to gain the true viscosity function is demonstrated for a shear jump experiment with A356.展开更多
The goal of the present work was to study the effects of acid treatment on the foaming properties of a soybean protein isolate (SPI) and its fractions, glycinin (11S) and β-conglycinin (7S). The structural char...The goal of the present work was to study the effects of acid treatment on the foaming properties of a soybean protein isolate (SPI) and its fractions, glycinin (11S) and β-conglycinin (7S). The structural characteristics, interfacial properties, foaming capacity and stability of the treated proteins were studied. Results from surface hydrophobicity and differential scanning calorimetry (DSC) showed that the acid treatment caused the complete denaturation of 11S and a partial denaturation of 7S. This protein unfolding affected their interracial properties, which led to an improvement in the foaming properties of both protein fractions and isolate. Treated 7S showed the best behavior in the rearrangement process, probably due to its smaller size and its modified structural characteristics. All treated proteins showed stronger interracial films. The foams of treated proteins were destabilized mostly due to gravitational drainage rather than Ostwald ripening.展开更多
Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">...Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> alloy from copper (Cu) and tin (Sn) was produced around 2500 BC and from then Bronze Age began. Subsequently iron (Fe) age started after the Bronze Age. Aluminium (Al) alloying was discovered much later because pure Al could not be recovered easily even though Al is the most abundant metal in the earth’s crust. Refining of Al is a very difficult job because of its strong affinity towards oxygen. To ease alloying, melting points (mp) of the individual constituents and reactivity of metal towards oxygen were the hurdles. Now understanding the thermodynamics of metal mixing has paved alloying. Periodic properties of elements concerning size, electronegativity, crystal structure, valency, lattice spacing, etc. are considered for alloying. In this feature article, more emphasis is given to Hume-Rothery rules in which the necessary parameters for alloying have been illustrated. Importantly standard electrode potential (E</span><sup><span style="font-family:Verdana;">0</span></sup><span style="font-family:Verdana;">) values, eutectic, phase diagram, size-related strain in metals, etc. have been looked into in the present discussion. One elegant example is Sn-Pb alloy, known as soft solder. Soft solder was in use for many years to connect metals and in electric circuitry. Low melting, flowability, and conductivity of soft solder had placed Sn-Pb alloy a unique position in industries, laboratories and even in cottage industries. However, toxic Pb volatilizes during soldering and hence soft solder is banned almost in all countries. We felt the need for a viable alternative to obtain soldering material and then silver (Ag) based highly conducting, an eco-friendly alloy of Sn resulted in from a high boiling liquid. The discovery engenders not only a new conducting soldering alloy but also a new concept of melting metals together. Furthermore, new ideas of alloying have been generalized at their nanostages from a suitable high boiling solvent.展开更多
Coordination complex of a copper cyanurate(Cu(Ⅱ)-CA) was transformed into coordination polymers upon the stimulus of extra Cu(Ⅱ) through “directed Ostwald ripening”. By increasing the molar ratio of Cu(Ⅱ) to CA, ...Coordination complex of a copper cyanurate(Cu(Ⅱ)-CA) was transformed into coordination polymers upon the stimulus of extra Cu(Ⅱ) through “directed Ostwald ripening”. By increasing the molar ratio of Cu(Ⅱ) to CA, we obtained two coordination polymers with selective coordination sites: Cu(Ⅱ)-κ N(HCA)κ NCu(Ⅱ) and Cu(Ⅱ)-κ N(HCA)κ O-Cu(Ⅱ), which display disparate magnetic interactions.展开更多
基金General Research Project of Zhejiang Provincial Department of Education,Grant/Award Number:Y202250766National Natural Science Foundation of China,Grant/Award Numbers:21905208,22250410263Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LY23B030001,LZ18E030001。
文摘Hollow structuring has been identified as an effective strategy to enhance the cycling stability of electrodes for rechargeable batteries due to the outstanding volume expansion buffering efficiency,which motivates ardent pursuing on the synthetic approaches of hollow materials.Herein,an intriguing route,combining solid precursor transition and Ostwald ripening(SPTOR),is developed to craft nano single-crystal(SC)-constructed MnCO_(3) submicron hollow spindles homogeneously encapsulated in a reduced graphene oxide matrix(MnCO_(3) SMHSs/rGO).It is noteworthy that the H-bonding interaction between Mn_(3)O_(4) nanoparticles(NPs)and oxygen-containing groups on GO promotes uniform anchoring of Mn_(3)O_(4) NPs on GO,mild reductant ascorbic acid triggers the progressive solid-to-solid transition from Mn_(3)O_(4) NPs to MnCO_(3) submicron solid spindles(SMSSs)in situ on GO,and the Ostwald ripening process induces the gradual dissolution of interior polycrystals of MnCO_(3) SMSSs and subsequent recrystallization on surface SCs of MnCO_(3) SMHSs.Remarkably,MnCO_(3) SMHSs/rGO delivers a 500th lithium storage capacity of 2023 mAh g^(-1) at 1000 mAg^(-1),which is 10 times higher than that of MnCO_(3) microspheres/rGO fabricated from a conventional Mn^(2+)salt precursor(202 mAh g^(-1)).The ultrahigh capacity and ultralong lifespan of MnCO_(3) SMHSs/rGO can be primarily attributed to the superior reaction kinetics and reversibility combined with exceptional interfacial and capacitive lithium storage capability,enabled by the fast ion/electron transfer,large specific surface area,and robust electrode pulverization inhibition efficacy.Moreover,fascinating in-depth lithium storage reactions of MnCO_(3) are observed such as the oxidation of Mn^(2+)in MnCO_(3) to Mn^(3+)in charge process after long-term cycles and the further lithiation of Li_(2)CO_(3) in discharge process.As such,the Carbon Energy.SPTOR approach may represent a viable strategy for crafting various hollow functional materials with metastable nanomaterials as precursors.
基金Project (No. 20076039) supported by the National Science Founda-tion of China
文摘The relation between the critical radius and the particle size distribution for generalized Ostwald type ripening processes whereby the mass transfer coefficient is modelled by a power law was derived. The critical radius is determined by the growth rate, the mass transfer coefficient and the mass balance, and is independent of whether the limiting stationary growth regime has been obtained.
基金National Key Research and Development Program of China(Nos.2021YFA1502800,2022YFA1504800,and 2022YFA1504500)the National Natural Science Foundation of China(Nos.21825203,22288201,22332006,and 22321002)+2 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0600300)the Fundamental Research Funds for the Central Universities(No.20720220009)Photon Science Center for Carbon Neutrality。
文摘Reconstruction of supported nanocatalysts often occurs in gas-solid reactions and significantly affects the catalytic performance,yet it is much less explored in liquid-phase environment.Herein,we find that highly-dispersed Ag nanocatalysts,i.e.,AgOx clusters,supported on alumina,silica,and titania,can aggregate into larger Ag or Ag2O particles after immersing in liquid-phase media at room temperature.The spontaneous aggregation of AgOx clusters in liquid water is attributed to liquid-phase Ostwald ripening through dissolution of AgOx clusters into water and subsequent redeposition to form Ag2O particles.The immersion into organic solvents such as ethanol leads to reduction of AgOx clusters and further growth into Ag particles.This work reveals that liquid-phase reaction media can induce substantial structural evolution of supported nanostructured catalysts,which should be carefully considered in liquid-solid interface catalytic reactions such as electrocatalysis,environmental catalysis,and organic synthesis in liquid phase.
基金supported by the National Natural Science Foundation of China(21875026,21878031)the Program for Liaoning Excellent Talents in University(LR2014013)+4 种基金the Science and Technology Foundation of Liaoning Province(No.201602052)the Natural Science Foundation of Liaoning Province(No.20170520427)supported by Liaoning Revitalization Talents Program(XLYC1802124)sponsored by the Liaoning BaiQianWan Talents Program,the scientific research fund of the educational department of Liaoning province(J2019013)The Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Project number:2019JH3/30100034,contract number:2019010278-JH3/301).
文摘Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and challenging.Herein,we reveal a general strategy for fabricating hollow binary oxides heterostructures(Co_(3)O_(4)-δ-MnO_(2)and Co_(3)O_(4)–SnO_(2))utilizing Ostwald ripening.Hollow Co_(3)O_(4)-δ-MnO_(2)nano-network with the structure evolution process was systematically explored through experimental and theoretical tools,identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth.In addition,the structural evolution,from hollow Co_(3)O_(4)-δ-MnO_(2)to Co_(3)O_(4)-α-MnO_(2),can be observed when the time of secondary hydrothermal reaches 96 h due to the topotactic layer-to-tunnel transition process.Notably,optimized Co_(3)O_(4)-δ-MnO_(2)-48 exhibits a superior PEC degradation efficiency of 96.42%and excellent durability(20,000 min)under harsh acid conditions,attributed to the massive hollow structures'vast surface area for high intently active species.Furthermore,density functional theory simulations elucidated the Co_(3)O_(4)-δ-MnO_(2)’electron-deficient surface and high d-band center(Co_(3)O_(4)-δ-MnO_(2),-1.06;Co_(3)O_(4)-α-MnO_(2),-1.49),strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species ofO_(2)and 1 O_(2).This work not only demonstrates superior PEC degradation efficiency of hollow Co_(3)O_(4)-δ-MnO_(2)for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.
基金The authors would like to thank the National Natural Science Foundation of China(Nos.51661008 and 21766032)Key Technology Research and Development Program of Shandong(No.2019GGX103029)for financially supporting this work.
文摘Transitional metal phosphides with array-like structure grown on conductive support materials are promising bifunctional catalysts for the oxygen evolution reaction(OER)and hydrogen evolution reaction(HER).In this study,a method was developed to synthesize directly porous Ni2P nanosheet arrays and Ni2P nanoparticles onto nickel foam via a hydrothermal reaction followed by a phosphorization process.Mechanistic studies revealed that the allomorphs of Ni2P nanosheets and Ni2P nanoparticles in the array-like structure were formed via the Kirkendall effect and Ostwald ripening.A fully functional water electrolyzer containing Ni2P as electrodes for the OER and HER exhibited promising activity and stability.At 10 mA·cm^−2,a Ni2P cell voltage of 1.63 V was obtained,which was only 0.05 V smaller than that found for Pt/C/NF||RuO2/NF cell.The enhanced electrocatalytic performance resulted from the favorable porosity of the Ni2P arrays and the synergistic effect between Ni2P nanosheets and Ni2P nanoparticles.
基金We acknowledge the Steady High Magnetic Field Facility in High Magnetic Field Laboratory, Chinese Academy of Sciences for the EPR measurement. This work was supported by the National Natural Science Foundation of China (Nos. 21173228 and 61204075), and the National High-Tech Research and Development Program of China (No. 2015AA050602).
文摘A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the volume ratio of isopropanol (IPA) to acetylacetone (Acac) in the solvothermal process. During the formation process of HM, precipitation of solid cores, subsequent deposition of outer shells on the surface of cores, and simultaneous core dissolution and shell recrystallizafion are observed, which validate the inside-out Ostwald ripening mechanism. Design and optimization of the properties (pore size, surface area, and trap state) of TiO2 microspheres are vital to the high performance of dye- sensitized solar cells (DSSCs). The optimized TiO2 rnicrospheres (rHM and rSM) obtained by post-processing on recrystallization, possess large pore sizes, high surface areas and reduced trap states (Ti3~ and oxygen vacancy), and are thus ideal materials for photovoltaic devices. The power conversion efficiency of DSSCs fabricated using rHM photoanode is 11.22%, which is significantly improved compared with the 10.54% efficiency of the rSM-based DSSC. Our work provides a strategy for synthesizing TiO2 microspheres that simultaneously accommodate different physical properties, in terms of surface area, crystallinity, morphology, and mesoporosity.
基金the financial support of the National Basic Research Program of China (2014CB643406)the National Natural Science Foundation of China (51674296, 51574287, 51704332)+1 种基金the National Postdoctoral Program for Innovative Talents (BX201700290)the Fundamental Research Funds for the Central Universities of Central South University (2017zzts125)
文摘An Ostwald ripening-based route is proposed to prepare Ni-rich layered cathodes with Co-rich surface for li- thium-ion batteries (LIBs). Commercially available Nio.aCo0.1 Mn0.8(OH)2 and spray pyrolysis derived porous Co304 are used as mixed precursors. During the lithiation reaction process under high-temperature, the porous Co304 microspheres scatter primary particles and spontaneously redeposit on the surface of Ni-rich spheres according to Ostwald ripening mechanism, forming the Ni-rich materials with Co-rich outer layers. When evaluated as cathode for LIBs, the resultant material shows ability to inhibit the cation disorder, relieves the phase transition from H2 to H3 and diminishes side re- actions between the electrolyte and Ni-rich cathode material. As a result, the obtained material with Co-rich outer layers exhibits much more improved cycle and rate performance than the material without Co-rich outer layers. Particularly, NCM-Co-1 (molar ratio of Nio.sCo0.1Mn0.1(OH)2/Co3Oa is 60:1) delivers a reversible capacity of 159.2 mA h g-1 with 90.5% capacity retention after 200 cycles at 1 C. This strategy pro- rides a general and efficient way to produce gradient sub- stances and to address the surface problems of Ni-rich cathode materials.
文摘The Ostwald ripening of carbide particles occurs during the process of subcritical annealing in SCM435 steel, and the degree of ripening influences the microstructure and mechanical properties of the steel. The effects of Ostwald ripening were studied by simulating different soaking time at 680 ~C using SCM435 steel. The spheroidized specimens were analysed by conducting microstructure and mechanical tests. After increasing the soaking time from 2 to 6 h at 680 ~C during subcritical annealing, the number of carbide particles and the spheroidization ratio increased gradually, and the formability was improved. When the soaking time ranged from 6 to 8 h, the spheroidization ratio was similar; however, the number of carbide particles decreased, and the formability gradually worsened. Therefore, by comprehensively comparing the microstructures and mechanical properties, the optimum soaking time was determined to be 6 h at 680 ~C during subcritical annealing to obtain preferable cold heading. In addition, the carbide particles gradually coarsened when the soaking time was extended from 2 to 8 h. A formula was presented to quantitatively characterize the progress of Ostwald ripening of the carbide particles during the subcritical annealing of SCM435 steel, and the relative error was less than 8.02%.
基金the National Natural Science Foundation of China(Nos.52022088,51971245,51772262,21406191,U20A20336,and 21935009)Beijing Natural Science Foundation(No.2202046)+2 种基金Fok Ying-Tong Education Foundation of China(No.171064)Natural Science Foundation of Hebei Province(Nos.F2021203097,B2020203037,and B2018203297)Hunan Innovation Team(No.2018RS3091).
文摘Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of SMBs.Understanding Na deposition mechanisms,particularly the early stage of Na deposition kinetics,is critical to enable the SMBs.In this context,we conducted in situ observations of the early stage of electrochemical Na deposition.We revealed an important electrochemical Ostwald ripening(EOR)phenomenon which dictated the early stage of Na deposition.Namely,small Na nanocrystals were nucleated randomly,which then grew.During growth,smaller Na nanocrystals were contained by bigger ones via EOR.We observed two types of EOR with one involving only electrochemical reaction driven by electrochemical potential difference between bigger and smaller nanocrystals;while the other being dominated by mass transport governed by surface energy minimization.The results provide new understanding to the Na deposition mechanism,which may be useful for the development of SMB for energy storage applications.
基金Item Sponsored by Guiding Programme of Science and Technology Research of Hebei of China(94122123)
文摘In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing growth of carbide proceeds in such a way that the bigger carbide particles swallow the smaller ones,and the short rhabdoid carbides dissolve and are spheroidized by itself.When the samples were held at 720℃ for more than 3 h,the spheroidization is not obvious.The feature of the process is the size increment and the amount decrement of carbide particles.The empirical equation for growth rate of carbides was obtained.The volume fraction of carbides keeps constant.The growth process agrees well with Ostwald Ripening Law.
基金the National Natural Science Foundation of China(No.51601174).
文摘The effects of tempering holding time at 700℃on the morphology,mechanical properties,and behavior of nanoparticles in Ti-Mo ferritic steel with different Mo contents were analyzed using scanning electron microscopy and transmission electron microscopy.The equilibrium solid solution amounts of Mo,Ti,and C in ferritic steel at various temperatures were calculated,and changes in the sizes of nanoparticles over time at different Mo contents were analyzed.The experimental results and theoretical calculations were in good agreement with each other and showed that the size of nanoparticles in middle Mo content nano-ferrite(MNF)steel changed the least during aging.High Mo contents inhibited the maturation and growth of nanoparticles,but no obvious inhibitory effect was observed when the Mo content exceeded 0.37wt%.The tensile strength and yield strength continuously decreased with the tempering time.Analysis of the strengthening and toughening mechanisms showed that the different mechanical properties among the three different Mo content experiment steels were mainly determined by grain refinement strengthening(the difference range was 30-40 MPa)and precipitation strengthening(the difference range was 78-127 MPa).MNF steel displayed an ideal chemical ratio and the highest thermodynamic stability,whereas low Mo content nano-ferrite(LNF)steel and high Mo content nano-ferrite(HNF)steel displayed relatively similar thermodynamic stabilities.
基金financially supported by the National Science Foundation for Young Scientists of China(No.5170402)the China Postdoctoral Fund(No.2018M630071)+1 种基金the Fundamental Research Funds for the Central Universities(No.RF-TP-19-030A2)the Joint Funds of the National Natural Science Foundation of China(No.U1560203)
文摘The properties of MnO–Al2O3–SiO2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al2O3–SiO2-based inclusion of 18 wt%Cr-8 wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr2O3-concentrated regions existed within the inclusion before soaking, but more and more Cr2O3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-pointphase MnO–Cr2O3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy(CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al2O3–SiO2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr2O3 inclusions.
文摘In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.
基金Project(50134020) supported by the National Natural Science Foundation of ChinaProject supported by Postdoctoral Fund of Central South University
文摘The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism was discussed. With the reaction beginning and continuing, amorphous Ni(OH)2 nano-crystallites grow up to spherical micron-particles with radially arranged crystallites. The nucleation, crystallization and re-crystallization led by Ostwald ripening simultaneously take place through the whole growth processes. With the course from reversible aggregation to irreversible agglomeration, the Ni(OH)2 particles tend to grow according to the template growth model: the growth on the crystallite templates stretching in the radius directions is free and quick, while the growth rate for crystallites in other directions is confined due to lower monomers concentration and tends to dissolve So it is only the radially arranged crystallites that predominate in the particle and lead to characteristic microstructures.
基金the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs, Agriculture and Innovation and The Netherlands Ministry of Education, Culture and Science (Grant no. 053.70.011)
文摘The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO2〉 SiC 〉 γ-Al2O3〉〉 α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
文摘In long-term rheological shear experiments with semi-solid alloys, coarsening of the particles will falsify the interpretation of the experimental results.The coarsening is intensified by the shear induced convection and the mean size of the particles is changed significantly during the experiments.A simple model has been set up which takes the influence of the convection into account.The resulting growth law has been simplified for diffusion and convection dominated growth.The growth law was verified with shear experiments in a Searl-rheometer with A356 and tin-lead alloys.The experiments demonstrated that under convection the growth follows a linear time law and that the rate constant depends on the root of the shear rate.The correction of experimental results to gain the true viscosity function is demonstrated for a shear jump experiment with A356.
文摘The goal of the present work was to study the effects of acid treatment on the foaming properties of a soybean protein isolate (SPI) and its fractions, glycinin (11S) and β-conglycinin (7S). The structural characteristics, interfacial properties, foaming capacity and stability of the treated proteins were studied. Results from surface hydrophobicity and differential scanning calorimetry (DSC) showed that the acid treatment caused the complete denaturation of 11S and a partial denaturation of 7S. This protein unfolding affected their interracial properties, which led to an improvement in the foaming properties of both protein fractions and isolate. Treated 7S showed the best behavior in the rearrangement process, probably due to its smaller size and its modified structural characteristics. All treated proteins showed stronger interracial films. The foams of treated proteins were destabilized mostly due to gravitational drainage rather than Ostwald ripening.
文摘Alloying of metals is known from antiquity. Alloy making <em>i.e.</em>, homogenizing metals started in a “hit-or-miss” way. The 1</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> alloy from copper (Cu) and tin (Sn) was produced around 2500 BC and from then Bronze Age began. Subsequently iron (Fe) age started after the Bronze Age. Aluminium (Al) alloying was discovered much later because pure Al could not be recovered easily even though Al is the most abundant metal in the earth’s crust. Refining of Al is a very difficult job because of its strong affinity towards oxygen. To ease alloying, melting points (mp) of the individual constituents and reactivity of metal towards oxygen were the hurdles. Now understanding the thermodynamics of metal mixing has paved alloying. Periodic properties of elements concerning size, electronegativity, crystal structure, valency, lattice spacing, etc. are considered for alloying. In this feature article, more emphasis is given to Hume-Rothery rules in which the necessary parameters for alloying have been illustrated. Importantly standard electrode potential (E</span><sup><span style="font-family:Verdana;">0</span></sup><span style="font-family:Verdana;">) values, eutectic, phase diagram, size-related strain in metals, etc. have been looked into in the present discussion. One elegant example is Sn-Pb alloy, known as soft solder. Soft solder was in use for many years to connect metals and in electric circuitry. Low melting, flowability, and conductivity of soft solder had placed Sn-Pb alloy a unique position in industries, laboratories and even in cottage industries. However, toxic Pb volatilizes during soldering and hence soft solder is banned almost in all countries. We felt the need for a viable alternative to obtain soldering material and then silver (Ag) based highly conducting, an eco-friendly alloy of Sn resulted in from a high boiling liquid. The discovery engenders not only a new conducting soldering alloy but also a new concept of melting metals together. Furthermore, new ideas of alloying have been generalized at their nanostages from a suitable high boiling solvent.
基金the financial support from the Australian Research Council (No.DP190101607)National Natural Science Foundation of China (No.21971203)。
文摘Coordination complex of a copper cyanurate(Cu(Ⅱ)-CA) was transformed into coordination polymers upon the stimulus of extra Cu(Ⅱ) through “directed Ostwald ripening”. By increasing the molar ratio of Cu(Ⅱ) to CA, we obtained two coordination polymers with selective coordination sites: Cu(Ⅱ)-κ N(HCA)κ NCu(Ⅱ) and Cu(Ⅱ)-κ N(HCA)κ O-Cu(Ⅱ), which display disparate magnetic interactions.