Effluent outfalls are an important exit for pollutants discharged from the source flowing into environmental water bodies,as well as an important guarantee for the ecological environment of natural water bodies.In res...Effluent outfalls are an important exit for pollutants discharged from the source flowing into environmental water bodies,as well as an important guarantee for the ecological environment of natural water bodies.In response to main problems of large and diverse effluent outfalls,as well as their monitoring analysis,tracing and regulation in China,classification and regulation countermeasures were proposed based on the characteristics of effluent outfalls.It is suggested that a comprehensive management and control system should be built by improving the management and control system,upgrading monitoring techniques and strengthening social supervision and public education,so as to provide a scientific basis for the supervision and management of effluent outfalls in China and help promote the improvement of water quality and the sustainable development and utilization of water resources.展开更多
In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town ...In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town of Zhenjiang. The specific research object is the runoff of the outfall of rainwater-sewage confluence in the area. On the basis of detecting and analyzing the water yield and water quality of the runoff of rainwater-sewage confluence a combined technology which contains four independent continuous processes for lowering pollution load was developed and system equipment was established and put into operation. The processing effects of the project were monitored and analyzed.The results show that the pollution control project of outfall runoff is efficient which decreases the pollution load including chemical oxygen demand COD total phosphorus TP suspended solids SS and ammonia-nitrogen NH3-N .As a result the water environment of the ancient canal is protected.展开更多
It is a valid route for quantitatively remote sensing on water pollution to build a model according to the physical mechanisms of scattering and absorbing of suspended substance, pollutant, and molecules of water. Re...It is a valid route for quantitatively remote sensing on water pollution to build a model according to the physical mechanisms of scattering and absorbing of suspended substance, pollutant, and molecules of water. Remote sensing model for water pollution based on single scattering is simple and easy to be used, but the precision is affected by turbidity of water. The characteristics of the energy composition of multiple scattering, are analyzed and it is proposed that, based on the model of single scattering, if the flux of the second scattering is considered additionally, the precision of the model will be remarkably improved and the calculation is still very simple. The factor of the second scattering is deduced to build a double scattering model, and the practical arithmetic for the calculation of the model is put forward. The result of applying this model in the water area around the Zhujiang(Pearl) River outfall shows that the precision is obviously improved. The result also shows that the seriously polluted water area is distributed in the northeast of Lingding Sea, the Victoria Bay of Hong Kong, and the Shengzhen Bay.展开更多
Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on F...Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established, The RNG κ-ε model is selected for turbulence modeling. The time-averaged vohtme fraction equations are introduced to simulate the stratification and inteffaeial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in ouffalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the inteffaeial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the inteffacial turbulent mixing is nut important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main ouffall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interracial turbulent mixing.展开更多
The numerical modeling for the cool water outfall discharge from the LNG Plant is undertaken using CORMIX to evaluate the design of diffuser for discharge. The hydrodynamic data tide and currents are used inputs to th...The numerical modeling for the cool water outfall discharge from the LNG Plant is undertaken using CORMIX to evaluate the design of diffuser for discharge. The hydrodynamic data tide and currents are used inputs to the model. It is then calibrated using monitored data. The software has been run to calculate the mixing zone and dilution patterns for various flow conditions. Model result shows that ambient condition is achieved within 64 m from the proposed outfall locations. From the results of the modeling studies it can be concluded that the proposed diffuser design and outfall locations are suitable for all tide conditions. It also shows that there is no significant impact on the marine life due to the proposed cool water discharge, beyond the small area around the discharge location, as the parameters are attaining near ambient water quality within the acceptable space and time.展开更多
This study was conducted during Dec2011-Nov2012 on three stations located in the south sector of Main Outfall Drain (MOD) River. Station 1 was near Al-Holandee Bridge which was the general carriage way in the center o...This study was conducted during Dec2011-Nov2012 on three stations located in the south sector of Main Outfall Drain (MOD) River. Station 1 was near Al-Holandee Bridge which was the general carriage way in the center of Al-Nassiriya city, station 2 was 20 km far from the first station, while station 3 was in the beginning of the new branch. This study reveals the Seasonal Variation of Total petroleum hydrocarbons (TPHs) in both surface waters, sediment and it is related with trace metals nickel and vanadium in water (dissolved, particulate) and sediment (residual and exchangeable) phases. Also, the study shows the relationships between the concentration of Ni and V with Total Organic Carbon (TOC%) in the sediment.展开更多
Outfall alternatives are evaluated for a municipal wastewater treatment facility that discharges effluent at the shoreline of an urban lake. Occurrence of plumes of poorly diluted effluent in adjoining portions of the...Outfall alternatives are evaluated for a municipal wastewater treatment facility that discharges effluent at the shoreline of an urban lake. Occurrence of plumes of poorly diluted effluent in adjoining portions of the lake is described. Alternatives considered include outfalls over a range of depth and various diffuser designs. Benefits and impacts on lake stratification and dissolved oxygen are evaluated for an array of design alternatives with a model which links a far field hydrothermal and transport submodel with a near field buoyant plume submodel. Outfall design features are described that: 1) reduce shoreline discharge of bypass flow of partially treated wastewater during major runoff events;2) eliminate plumes of poorly diluted effluent;and 3) reduce loading of the effluent to the upper waters. A deep (10 to 14 m) outfall with a multiport diffuser would reduce the loading of the facility’s effluent to the upper waters by approximately 40%, without noteworthy impact on stratification or dissolved oxygen.展开更多
To further clarify the distribution mechanism of polycyclic aromatic hydrocarbons (PAHs) which cause damage to human and ecosystem health,the differences between 15 kinds of PAHs in Meizhou Bay coastal zones in terms ...To further clarify the distribution mechanism of polycyclic aromatic hydrocarbons (PAHs) which cause damage to human and ecosystem health,the differences between 15 kinds of PAHs in Meizhou Bay coastal zones in terms of the concentration,spatial distribution and sources,especially the ocean area around drainage outlets of sewage treatment plants,were fully investigated.The results indicated that the total concentration of 15 kinds of PAHs at each sampling station ranged from 27.2 to 774.2 ng/L.PAHs in Meizhou Bay coastal zones decreased as follows:4-ring>3-ring>5-ring>6-ring.As for the ∑PAHs,the concentration increased from the reference ocean area,affected ocean area to the mixed ocean area.Furthermore,the concentration of PAHs in the bottom area was obviously larger than that in the surface layer,indicating that the concentration of PAHs with various rings varied significantly in different ocean areas.The concentration of ∑PAHs had no significant correlation with water quality parameters such as temperature,salinity,pH and so on.In addition,PAHs in the mixed ocean area derived from fossil fuel,while PAHs in the affected ocean area and reference ocean area were mainly from fossil fuel and oil.展开更多
-Sediment from Xiamen industrial area was added to marine ecosystem enclosures to test the effects on the planktonic communities in Xiamen Bay, China, in April, 1985. Sediments were added at two concentrations, 11.2 a...-Sediment from Xiamen industrial area was added to marine ecosystem enclosures to test the effects on the planktonic communities in Xiamen Bay, China, in April, 1985. Sediments were added at two concentrations, 11.2 and 112 ppm dry wt. respectively. The species of phytoplankton did not change as compared with the control, but the number of diatoms markedly decreased in the sediment treated enclosures. A suppression of photosynthesis was presumed to be due to light attenuation by the added sediment. Microflagellates, zooplankton and bacteria were resistant to sediment increase in water column.展开更多
In June, 2004 and February, 2007, in field tracer studies were conducted on the Hollywood and South Central outfalls, using sulfur hexafluoride (SF6) as a tracer. The objective of these studies was to determine if the...In June, 2004 and February, 2007, in field tracer studies were conducted on the Hollywood and South Central outfalls, using sulfur hexafluoride (SF6) as a tracer. The objective of these studies was to determine if the tracer could be detected in the farfield at significant distance, and if so, could this data be used to construct a model of the farfield plume. Prior models for farfield plume movement do not appear to comport well with the conditions in southeast Florida. Extensive research was conducted in southeast Florida on 4 outfalls, which led to the development of nearfield dilution equations for same. However farfield modeling of outfall plumes was difficult to accomplish because the tracers used are not detectable for significant distances. The SF6 resolved that problem and as a result the Hollywood outfall was used to construct a model. Two methods were investigated for modeling the plume, 1) the Eureqa formulation method and 2) the Gamma-Curve method. The concentrations in the x-y plane were first found by using the Eureqa formulation to calculate the concentration at each grid point given its depth and the concentration of the centerline at the same latitude. The plume models were generated using MATLAB that matched with the results actually seen in the field.展开更多
The alimentary canal contents of 360 Barbus luteus caught from MOD between January 2010 to December 2010 were examined. The phyto-plankton, zooplanktons, detritus, diatoms, insects and unidentified digestive food were...The alimentary canal contents of 360 Barbus luteus caught from MOD between January 2010 to December 2010 were examined. The phyto-plankton, zooplanktons, detritus, diatoms, insects and unidentified digestive food were identified in the alimentary canal of fish. The results of diet analysis showed that the B. luteus was omnivorous. The species of fish tended to consume more plant origin food. The aquatic plants and tissues were the main part of thier food followed by chlorophyta and cyanophyta. The results revealed that the species obtained or fell their food item from the bed of rivers or near to it.展开更多
Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respect...Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.展开更多
The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer ef...The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer effluent treatment, which calls for a significant amount of wastewater-related data. The biological improvement of a urea fertilizer effluent via GPS* simulation was carried out in this work using a methodical process. Using established analytical techniques, temperature, total suspended solids (TSS), biochemical oxygen demand (BOD), total phosphorus (T/), chemical oxygen demand (COD), total nitrogen (TN), total nitrate (NO<sub>3</sub>), electric conductivity (EC), turbidity, residual chlorine, urea, NH<sub>3</sub>, and heavy metals (Cu, Cd, Cr, Pb, Ni, and Fe) were assessed. The research revealed that the measured values from the fertilizer factory outfall effluent had high concentrations of all the physicochemical water quality indicators, with the exception of TSS, PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>. These concentrations are higher compared to the authorized limits or suggested values by the Federal Environmental Protection Agency (FEPA). To improve the therapy biologically, however, a modeling and simulation program (GPS-X, version 8.0) was used with the physicochemical information gathered from the studied sample. The results of the treated water simulation showed that the concentrations of BOD<sub>5</sub> and COD had been significantly reduced by 35% and 44%, respectively. Additionally, it was discovered that total phosphorus (TP), nitrate (N), and total nitrogen (TN) were all within the permitted FEPA limit. The results revealed good treatment performance of the wastewater with increasing concentration of acetic acid and sodium hydroxide. Hence, the results of this research work identify the need for proper treatment of fertilizer industry effluents prior to their release into the environment.展开更多
Universal Soil Loss Equation (USLE) is the most comprehensive technique available to predict the long term average annual rate of erosion on a field slope. USLE was governed by five factors include soil erodibility fa...Universal Soil Loss Equation (USLE) is the most comprehensive technique available to predict the long term average annual rate of erosion on a field slope. USLE was governed by five factors include soil erodibility factor (K), rainfall and runoff erodibility index (R), crop/vegetation and management factor (C), support practice factor (P) and slope length-gradient factor (LS). In the past, K, R and LS factors are extensively studied. But the impacts of factors C and P to outfall Total Suspended Solid (TSS) and % reduction of TSS are not fully studied yet. Therefore, this study employs Buffer Zone Calculator as a tool to determine the sediment removal efficiency for different C and P factors. The selected study areas are Santubong River, Kuching, Sarawak. Results show that the outfall TSS is increasing with the increase of C values. The most effective and efficient land use for reducing TSS among 17 land uses investigated is found to be forest with undergrowth, followed by mixed dipt. forest, forest with no undergrowth, cultivated grass, logging 30, logging 10^6, wet rice, new shifting agriculture, oil palm, rubber, cocoa, coffee, tea and lastly settlement/cleared land. Besides, results also indicate that the % reduction of TSS is increasing with the decrease of P factor. The most effective support practice to reduce the outfall TSS is found to be terracing, followed by contour-strip cropping, contouring and lastly not implementing any soil conservation practice.展开更多
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flow...Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent-mixing-rates toward the sea surface so that the submerged waste-field could be detected from a space satellite (Bondur and Filatov, 2003).展开更多
In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quan...In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quantification of enhanced mixing due to surface waves as well as measurement of other plume parameters.展开更多
Multiport diffusers are the effective engineering devices installed at the marine outfall systems for the steady discharge of effluent streams from the modern coastal plants, such as municipal sewage treatment, power ...Multiport diffusers are the effective engineering devices installed at the marine outfall systems for the steady discharge of effluent streams from the modern coastal plants, such as municipal sewage treatment, power generation and seawater desalination. A far field mathematical model using a two-dimensional advection-diffusion equation is presented for continuous discharges of effluent streams from multiple outfalls on a uniformly sloping beach with a current parallel to the shoreline. The analytical solutions are illustrated graphically to replicate and capture the merging process of effluent plumes in shallow coastal waters, and then asymptotic approximation will be made to the maximum shoreline’s concentration to formulate effluent discharge plume dilution from a multiport diffuser.展开更多
Based on the study of the wave propagation, breaking, longshore current and the effect of wave on current structure in the near shore area with a mild bottom slope, the wave is considered to be an important dynamic fa...Based on the study of the wave propagation, breaking, longshore current and the effect of wave on current structure in the near shore area with a mild bottom slope, the wave is considered to be an important dynamic factor for pollutant transportation in the coastal water. Numerical simulation shows that the pollutant will transfer along shore when the incident wave is at an angle to the shoreline. This phenomenon is very significant if the outfall is located in the surfzone. Therefore, in the design of sea outfall, to improve near shore environment, the water wave should be considered as an important hydrodynamic factor.展开更多
文摘Effluent outfalls are an important exit for pollutants discharged from the source flowing into environmental water bodies,as well as an important guarantee for the ecological environment of natural water bodies.In response to main problems of large and diverse effluent outfalls,as well as their monitoring analysis,tracing and regulation in China,classification and regulation countermeasures were proposed based on the characteristics of effluent outfalls.It is suggested that a comprehensive management and control system should be built by improving the management and control system,upgrading monitoring techniques and strengthening social supervision and public education,so as to provide a scientific basis for the supervision and management of effluent outfalls in China and help promote the improvement of water quality and the sustainable development and utilization of water resources.
基金The National Science and Technology Major Project of China(No.2008ZX07317-001)
文摘In order to improve water quality of middle ancient canal in Zhenjiang city a pollution control project was carried out.The research area is the middle catchment area of the ancient canal river system in the old town of Zhenjiang. The specific research object is the runoff of the outfall of rainwater-sewage confluence in the area. On the basis of detecting and analyzing the water yield and water quality of the runoff of rainwater-sewage confluence a combined technology which contains four independent continuous processes for lowering pollution load was developed and system equipment was established and put into operation. The processing effects of the project were monitored and analyzed.The results show that the pollution control project of outfall runoff is efficient which decreases the pollution load including chemical oxygen demand COD total phosphorus TP suspended solids SS and ammonia-nitrogen NH3-N .As a result the water environment of the ancient canal is protected.
基金the National Key Foundation Research Program under of China contract No.G2000077903-8 the Key Research Program of Guangdong Province under contract No.207-422-19.
文摘It is a valid route for quantitatively remote sensing on water pollution to build a model according to the physical mechanisms of scattering and absorbing of suspended substance, pollutant, and molecules of water. Remote sensing model for water pollution based on single scattering is simple and easy to be used, but the precision is affected by turbidity of water. The characteristics of the energy composition of multiple scattering, are analyzed and it is proposed that, based on the model of single scattering, if the flux of the second scattering is considered additionally, the precision of the model will be remarkably improved and the calculation is still very simple. The factor of the second scattering is deduced to build a double scattering model, and the practical arithmetic for the calculation of the model is put forward. The result of applying this model in the water area around the Zhujiang(Pearl) River outfall shows that the precision is obviously improved. The result also shows that the seriously polluted water area is distributed in the northeast of Lingding Sea, the Victoria Bay of Hong Kong, and the Shengzhen Bay.
文摘Saline intrusion into marine sewage ouffalls will greatly decrease the efficiency of sewage disposal. In order to investigate the mechanisms of this flow, in this paper, a three-dimensional numerical model based on FVM (Finite Volume Method) is established, The RNG κ-ε model is selected for turbulence modeling. The time-averaged vohtme fraction equations are introduced to simulate the stratification and inteffaeial exchange of sewage and seawater in outfalls. Validity of the established three-dimensional numerical model is evaluated by comparisons of numerical results with experimental data. With this three-dimensional numerical model, the internal flow characteristics in ouffalls for different sewage discharges are simulated. The results indicate that for a low sewage discharge, saline circulates in the outfall due to intrusion and both the inflowing momentum and the inteffaeial turbulent mixing are important mechanisms to extrude the saline. For a high sewage discharge, saline intrusion could be avoided. The inflow momentum is the main mechanism to extrude the saline and the inteffacial turbulent mixing is nut important relatively. Even at a high sewage discharge, the saline wedge would be retained in the main ouffall pipe after the risers are purged. It takes a long time for this saline wedge to be extruded by interracial turbulent mixing.
文摘The numerical modeling for the cool water outfall discharge from the LNG Plant is undertaken using CORMIX to evaluate the design of diffuser for discharge. The hydrodynamic data tide and currents are used inputs to the model. It is then calibrated using monitored data. The software has been run to calculate the mixing zone and dilution patterns for various flow conditions. Model result shows that ambient condition is achieved within 64 m from the proposed outfall locations. From the results of the modeling studies it can be concluded that the proposed diffuser design and outfall locations are suitable for all tide conditions. It also shows that there is no significant impact on the marine life due to the proposed cool water discharge, beyond the small area around the discharge location, as the parameters are attaining near ambient water quality within the acceptable space and time.
文摘This study was conducted during Dec2011-Nov2012 on three stations located in the south sector of Main Outfall Drain (MOD) River. Station 1 was near Al-Holandee Bridge which was the general carriage way in the center of Al-Nassiriya city, station 2 was 20 km far from the first station, while station 3 was in the beginning of the new branch. This study reveals the Seasonal Variation of Total petroleum hydrocarbons (TPHs) in both surface waters, sediment and it is related with trace metals nickel and vanadium in water (dissolved, particulate) and sediment (residual and exchangeable) phases. Also, the study shows the relationships between the concentration of Ni and V with Total Organic Carbon (TOC%) in the sediment.
文摘Outfall alternatives are evaluated for a municipal wastewater treatment facility that discharges effluent at the shoreline of an urban lake. Occurrence of plumes of poorly diluted effluent in adjoining portions of the lake is described. Alternatives considered include outfalls over a range of depth and various diffuser designs. Benefits and impacts on lake stratification and dissolved oxygen are evaluated for an array of design alternatives with a model which links a far field hydrothermal and transport submodel with a near field buoyant plume submodel. Outfall design features are described that: 1) reduce shoreline discharge of bypass flow of partially treated wastewater during major runoff events;2) eliminate plumes of poorly diluted effluent;and 3) reduce loading of the effluent to the upper waters. A deep (10 to 14 m) outfall with a multiport diffuser would reduce the loading of the facility’s effluent to the upper waters by approximately 40%, without noteworthy impact on stratification or dissolved oxygen.
基金Supported by Key Laboratory of Integrated Marine Monitoring Technology and Applied Technologies for Harmful Algal Blooms,State Oceanic Administration(MATHAB201802)
文摘To further clarify the distribution mechanism of polycyclic aromatic hydrocarbons (PAHs) which cause damage to human and ecosystem health,the differences between 15 kinds of PAHs in Meizhou Bay coastal zones in terms of the concentration,spatial distribution and sources,especially the ocean area around drainage outlets of sewage treatment plants,were fully investigated.The results indicated that the total concentration of 15 kinds of PAHs at each sampling station ranged from 27.2 to 774.2 ng/L.PAHs in Meizhou Bay coastal zones decreased as follows:4-ring>3-ring>5-ring>6-ring.As for the ∑PAHs,the concentration increased from the reference ocean area,affected ocean area to the mixed ocean area.Furthermore,the concentration of PAHs in the bottom area was obviously larger than that in the surface layer,indicating that the concentration of PAHs with various rings varied significantly in different ocean areas.The concentration of ∑PAHs had no significant correlation with water quality parameters such as temperature,salinity,pH and so on.In addition,PAHs in the mixed ocean area derived from fossil fuel,while PAHs in the affected ocean area and reference ocean area were mainly from fossil fuel and oil.
文摘-Sediment from Xiamen industrial area was added to marine ecosystem enclosures to test the effects on the planktonic communities in Xiamen Bay, China, in April, 1985. Sediments were added at two concentrations, 11.2 and 112 ppm dry wt. respectively. The species of phytoplankton did not change as compared with the control, but the number of diatoms markedly decreased in the sediment treated enclosures. A suppression of photosynthesis was presumed to be due to light attenuation by the added sediment. Microflagellates, zooplankton and bacteria were resistant to sediment increase in water column.
文摘In June, 2004 and February, 2007, in field tracer studies were conducted on the Hollywood and South Central outfalls, using sulfur hexafluoride (SF6) as a tracer. The objective of these studies was to determine if the tracer could be detected in the farfield at significant distance, and if so, could this data be used to construct a model of the farfield plume. Prior models for farfield plume movement do not appear to comport well with the conditions in southeast Florida. Extensive research was conducted in southeast Florida on 4 outfalls, which led to the development of nearfield dilution equations for same. However farfield modeling of outfall plumes was difficult to accomplish because the tracers used are not detectable for significant distances. The SF6 resolved that problem and as a result the Hollywood outfall was used to construct a model. Two methods were investigated for modeling the plume, 1) the Eureqa formulation method and 2) the Gamma-Curve method. The concentrations in the x-y plane were first found by using the Eureqa formulation to calculate the concentration at each grid point given its depth and the concentration of the centerline at the same latitude. The plume models were generated using MATLAB that matched with the results actually seen in the field.
文摘The alimentary canal contents of 360 Barbus luteus caught from MOD between January 2010 to December 2010 were examined. The phyto-plankton, zooplanktons, detritus, diatoms, insects and unidentified digestive food were identified in the alimentary canal of fish. The results of diet analysis showed that the B. luteus was omnivorous. The species of fish tended to consume more plant origin food. The aquatic plants and tissues were the main part of thier food followed by chlorophyta and cyanophyta. The results revealed that the species obtained or fell their food item from the bed of rivers or near to it.
文摘Some practical design tips and important recommendations are given to minimize the negative effect of discharge of wastewater laden with solid particles via submarine outfall. This study emphasizes the role of respecting the hydraulic conditions in the outfall to prevent sedimentation in the outfall or their accumulation in adjacent areas; also it includes the ways used to improve the outfall hydraulic capacity that decreases with time. The diagnostics and remediation procedures of mixing zones are discussed, especially in the case of previous toxic discharge that results in toxic sediments at the bed load. A literature review of techniques used to assess sediment quality near discharge points and locate effluent-affected sediment deposit is presented that include using acoustic profiles and images, chemical analysis, toxicity tests and multivariate indicators.
文摘The use of modeling and simulation has developed into a critical tool for the sustainable management of wastewater, especially when it comes to replicating the complex biochemical procedures required for fertilizer effluent treatment, which calls for a significant amount of wastewater-related data. The biological improvement of a urea fertilizer effluent via GPS* simulation was carried out in this work using a methodical process. Using established analytical techniques, temperature, total suspended solids (TSS), biochemical oxygen demand (BOD), total phosphorus (T/), chemical oxygen demand (COD), total nitrogen (TN), total nitrate (NO<sub>3</sub>), electric conductivity (EC), turbidity, residual chlorine, urea, NH<sub>3</sub>, and heavy metals (Cu, Cd, Cr, Pb, Ni, and Fe) were assessed. The research revealed that the measured values from the fertilizer factory outfall effluent had high concentrations of all the physicochemical water quality indicators, with the exception of TSS, PO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>-</sup>, and NO<sub>3</sub><sup>-</sup>. These concentrations are higher compared to the authorized limits or suggested values by the Federal Environmental Protection Agency (FEPA). To improve the therapy biologically, however, a modeling and simulation program (GPS-X, version 8.0) was used with the physicochemical information gathered from the studied sample. The results of the treated water simulation showed that the concentrations of BOD<sub>5</sub> and COD had been significantly reduced by 35% and 44%, respectively. Additionally, it was discovered that total phosphorus (TP), nitrate (N), and total nitrogen (TN) were all within the permitted FEPA limit. The results revealed good treatment performance of the wastewater with increasing concentration of acetic acid and sodium hydroxide. Hence, the results of this research work identify the need for proper treatment of fertilizer industry effluents prior to their release into the environment.
文摘Universal Soil Loss Equation (USLE) is the most comprehensive technique available to predict the long term average annual rate of erosion on a field slope. USLE was governed by five factors include soil erodibility factor (K), rainfall and runoff erodibility index (R), crop/vegetation and management factor (C), support practice factor (P) and slope length-gradient factor (LS). In the past, K, R and LS factors are extensively studied. But the impacts of factors C and P to outfall Total Suspended Solid (TSS) and % reduction of TSS are not fully studied yet. Therefore, this study employs Buffer Zone Calculator as a tool to determine the sediment removal efficiency for different C and P factors. The selected study areas are Santubong River, Kuching, Sarawak. Results show that the outfall TSS is increasing with the increase of C values. The most effective and efficient land use for reducing TSS among 17 land uses investigated is found to be forest with undergrowth, followed by mixed dipt. forest, forest with no undergrowth, cultivated grass, logging 30, logging 10^6, wet rice, new shifting agriculture, oil palm, rubber, cocoa, coffee, tea and lastly settlement/cleared land. Besides, results also indicate that the % reduction of TSS is increasing with the decrease of P factor. The most effective support practice to reduce the outfall TSS is found to be terracing, followed by contour-strip cropping, contouring and lastly not implementing any soil conservation practice.
文摘Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent-mixing-rates toward the sea surface so that the submerged waste-field could be detected from a space satellite (Bondur and Filatov, 2003).
文摘In this paper, the diluting effect of surface waves on a buoyant plume has been measured using a Laser Induced Fluorescence (LIF) technique. The resulting time-averaged, full field concentration maps have allowed quantification of enhanced mixing due to surface waves as well as measurement of other plume parameters.
文摘Multiport diffusers are the effective engineering devices installed at the marine outfall systems for the steady discharge of effluent streams from the modern coastal plants, such as municipal sewage treatment, power generation and seawater desalination. A far field mathematical model using a two-dimensional advection-diffusion equation is presented for continuous discharges of effluent streams from multiple outfalls on a uniformly sloping beach with a current parallel to the shoreline. The analytical solutions are illustrated graphically to replicate and capture the merging process of effluent plumes in shallow coastal waters, and then asymptotic approximation will be made to the maximum shoreline’s concentration to formulate effluent discharge plume dilution from a multiport diffuser.
基金This work was supported by Key Project of the National Natural Science Foundation of China (Grant No. 59839330).
文摘Based on the study of the wave propagation, breaking, longshore current and the effect of wave on current structure in the near shore area with a mild bottom slope, the wave is considered to be an important dynamic factor for pollutant transportation in the coastal water. Numerical simulation shows that the pollutant will transfer along shore when the incident wave is at an angle to the shoreline. This phenomenon is very significant if the outfall is located in the surfzone. Therefore, in the design of sea outfall, to improve near shore environment, the water wave should be considered as an important hydrodynamic factor.